Incorporación de óxido de grafeno en una solución de cal. Estudio de la floculación y de la mejora correspondiente

Autores/as

DOI:

https://doi.org/10.3989/mc.2018.05217

Palabras clave:

Cemento Portland, Reacción, Cal, Dispersión, Superplastificantes

Resumen


La posible dispersión que el óxido de grafeno pueda inducir en matrices de cemento es un factor importante a considerar para mejorar el rendimiento del cemento. En este trabajo, se ha investigado la dispersión de óxido de grafeno en cemento simulando el ambiente alcalino con una solución del hidróxido de calcio, estudiando las estrategias correspondientes para mejorar el grado de dispersión. Los resultados obtenidos mostraron que el óxido de grafeno flocula incluso cuando la concentración de hidróxido de calcio es muy baja, lo que podría ser la razón principal de las características inestables del cemento dopado con óxido de grafeno. Además, se ha determinado que, en contraste con los grupos OH, los grupos COOH y las largas cadenas de los aditivos superplastificantes basados en policarboxilatos retrasan dicha floculación. Finalmente, se propone un mecanismo de dispersión de dichos aditivos superplastificantes basados en policarboxilatos. Este estudio proporciona una base para el diseño de materiales de cemento dopados con óxido de grafeno.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Gong K.; Pan Z.; Korayem A.H.; Qiu L.; Li D.; Collins F.; Wang C.M.; Duan W.H. (2015) Reinforcing Effects of Graphene Oxide on Portland Cement Paste. J. Mater. Civ. Eng. 27, A4014010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125

Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. (2015) Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Comp. 58, 140–147. https://doi.org/10.1016/j.cemconcomp.2015.02.001

Mohammed, A.; Sanjayan, J.G.; Duan, W.H.; Nazari, A. (2015) Incorporating graphene oxide in cement composites: a study of transport properties. Constr. Build. Mater. 84(1), 341–347. https://doi.org/10.1016/j.conbuildmat.2015.01.083

Rhee, I.; Lee, J.S.; Kim, Y.A.; Jin, H.K.; Ji, H.K. (2016) Electrically conductive cement mortar: incorporating rice husk-derived high-surface-area graphene. Constr. Build. Mater. 125, 632–642. https://doi.org/10.1016/j.conbuildmat.2016.08.089

Li, X.; Korayem, A.H.; Li, C.; Liu, Y.; He, H.; Sanjayan, J.G.; Duan, W.H. (2016) Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Constr. Build. Mater. 123, 327–335. https://doi.org/10.1016/j.conbuildmat.2016.07.022

Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022

Wang, B.; Jiang, R.; Wu, Z. (2016) Investigation of the Mechanical Properties and Microstructure of Graphene Nanoplatelet-Cement Composite. Nanomaterials. 6, 200. https://doi.org/10.3390/nano6110200 PMid:28335328 PMCid:PMC5245736

Metaxa, Z.S. (2015) Polycarboxylate based superplasticizers as dispersant agents for exfoliated graphene nanoplatelets reinforcing cement based materials. J. Eng. Sci. and Techno. Rev. 8(5), 1–5.

Sharma, S.; Kothiyal, N.C. (2015) Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites. Constr. Build. Mater. 115, 256–268. https://doi.org/10.1016/j.conbuildmat.2016.04.019

Hummers, W.S.; Offeman, R.E. (1958) Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339. https://doi.org/10.1021/ja01539a017

Lu, Z.; Hou, D.; Meng, L.; Sun, G.; Lu C.; Li, Z. (2015) Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechani cal properties. RSC Adv. 5, 100598–100605. https://doi.org/10.1039/C5RA18602A

Chen, W.; Yan, L. (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere. Nanoscale. 2(4), 559–563. https://doi.org/10.1039/b9nr00191c PMid:20644759

Kothiyal, N. C.; Sharma, S.; Mahajan, S.; Sethi, S. (2016) Characterization of reactive graphene oxide synthesized from ball – milled graphite: its enhanced reinforcing effects on cement nanocomposites. J. Adhes. Sci. Technol. 30(9), 915–933. https://doi.org/10.1080/01694243.2015.1129214

Lu, L.; Ouyang, D. (2017) Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets. Nanomaterials. 7(7), 187. https://doi.org/10.3390/nano7070187 PMid:28726750 PMCid:PMC5535253

Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen ST. (2015) Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20(21), 6592–6594. https://doi.org/10.1021/cm801932u

Yang, H.; Monasterio, M.; Cui, H.; Han, N. (2017) Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Composites Part A. https://doi.org/10.1016/j.compositesa.2017.07.022

Lu, Z.; Hanif, A.; Ning, C.; Shao, H.; Yin, R.; Li, Z. (2017) Steric stabilization of graphene oxide in alkaline cementitious solutions: mechanical enhancement of cement composite. Mater. Des. 127, 154–161. https://doi.org/10.1016/j.matdes.2017.04.083

Li, X.; Lu, Z.; Chuah, S.; Li, W.; Liu, Y.; Duan, W. H.; Li Z. (2017) Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste. Composites Part A. 100, 1–8. https://doi.org/10.1016/j.compositesa.2017.05.002

Wang, M.; Wang, R.; Yao, H.; Wang, Z.; Zheng, S. (2016) Adsorption characteristics of graphene oxide nanosheets on cement. RSC Adv. 6(68).

Zhao, L.; Guo, X.; Ge, C.; Li, Q.; Guo, L.; Shu, X.; Liu, J. (2016) Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Constr. Build. Mater. 113, 470–478. https://doi.org/10.1016/j.conbuildmat.2016.03.090

Zhou, C.; Li, F.; Hu, J.; Ren, M.; Wei, J.; Yu, Q. (2017) Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr. Build. Mater. 134, 336–345. https://doi.org/10.1016/j.conbuildmat.2016.12.147

Luo, Z.; Lu, Y.; Somers, L. A.; Johnson, A. T. (2009) High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131(3), 898. https://doi.org/10.1021/ja807934n PMid:19128004

Everett; Hugh, D. (1988) Basic Principles of Colloid Science, Royal Society of Chemistry, London, (1988).

Park, S.; Lee, K.S.; Bozoklu, G.; Cai, W.; Nguyen, S.T.; Ruoff, R.S. (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano. 2(3), 572–578. https://doi.org/10.1021/nn700349a PMid:19206584

Wang, M.; Wang, R.; Yao, H.; Farhan, S.; Zheng. S.; Du C. (2016) Study on the three dimensional mechanism of graphene oxide nanosheets modified cement. Constr. Build. Mater. 126, 730–739. https://doi.org/10.1016/j.conbuildmat.2016.09.092

Publicado

2018-09-30

Cómo citar

Jing, G. J., Ye, Z. M., Lu, X. L., Wu, J. M., Wang, S. X., & Cheng, X. (2018). Incorporación de óxido de grafeno en una solución de cal. Estudio de la floculación y de la mejora correspondiente. Materiales De Construcción, 68(331), e165. https://doi.org/10.3989/mc.2018.05217

Número

Sección

Artículos