The influence of CuO nanoparticles and boron wastes on the properties of cement mortar




Compressive strength, Mortar, Thermal analysis, Waste treatment, X-ray diffraction


In this study, compressive and flexural strength, thermal properties, and pore structure of mortars modified with two types of boron waste and different amounts of CuO nanoparticles were investigated. The binders were prepared with 3% of borogypsum or borax waste and nano-CuO at concentration up to 4%. The setting time, compressive and flexural strength at 3, 7, and 28 days, DTA/TG, XRD, BET, and water absorption tests were carried out, and optimal nano-CuO percentages were determined. It was observed that nano-CuO addition in the range 2%–2.5% can improve mechanical properties, reduce the amount of unreacted portlandite, increase water absorption resistance, and decrease the setting time for borogypsum-containing mortars. The optimum nano-CuO replacement ratio changes between 0.5%–1% for borax waste-containing mortars. The results showed that nano-CuO was able to promote hydration reactions, act as a nanofiller, and provide a kernel for nucleation reactions.


Download data is not yet available.


Lothenbach, B.; Scrivener, K.; Hooton R.D. (2011) Supplementary cementitious materials. Cem. Concr. Res. 41, 1244-1256.

Targan, S.; Olgun, A.; Erdogan, Y.; Sevinc, V. (2003) Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement. Cem. Concr. Res. 33, 1175-1182.

Olgun, A.; Kavas, T.; Erdogan, Y.; Once, G. (2007) Physicochemical characteristics of chemically activated cement containing boron. Build. Environ. 42, 2384-2395.

Topcu, I.B.; Boga, A.R. (2010) Effect of boron waste on the properties of mortar and concrete. Waste Manage. Res. 28, 626-633. PMid:19808737

Banar, M.; Gu ney, Y.; Ozkan, A.; Gu nkaya, Z.; Bayrak1c, E.; Ulutas, D. (2016) Utilization of waste clay from boron production in bituminous geosynthetic barrier (GBR-B) production as landfill liner. Int. J. Polym. Sci., Article ID 1648920.

Kula, I.; Olgun, A.; Sevinc, V.; Erdogan Y. (2002) An investigation on the use of tincal ore waste, f ly ash, and coal bottom ash as Portland cement replacement materials. Cem. Concr. Res. 32, 227-232.

Oltulu, M.; ^ ahin, R. (2014) Pore structure analysis of hardened cement mortars containing silica fume and different nano-powders. Constr. Build. Mater. 53, 658-664.

Oltulu, M.; ^ ahin, R. (2011) Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Mat. Sci. Eng. A- Struct. 528, 7012-7019.

Senff, L.; Labrincha, J.A.; Ferreira, V.M.; Hotza, D.; Repette, W.L. (2009) Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23, 2487-2491.

Behfarnia, K.; Salemi, N. (2013) The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater. 48, 580-584.

Oltulu, M.; ^ ahin, R. (2013) Effect of nano-SiO2, nano- Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study. Energy Buildings, 58, 292-301.

Heikal, M.; Ismail, M.N.; Ibrahim, N.S. (2015) Physicomechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles. Constr. Build. Mater. 91, 232-242.

Yu, R.; Spiesz, P.; Brouwers, H.J.H.; (2014) Effect of nanosilica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Constr. Build. Mater. 65, 140-150.

Farzadnia, N.; Abang Ali, A.A.; Demirboga R.; (2013) Characterization of high strength mortars with nano alumina at elevated temperatures. Cem. Concr. Res. 54, 43-54.

Jalal, M.; Fathi, M.; Farzad, M.; (2013) Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength selfcompacting concrete. Mech. Mater. 61, 11-27.

Arefi, M.R.; Rezaei-Zarchi, S. (2012) Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites. Int. J. Mol. Sci.,13, 4340-4350. PMid:22605981 PMCid:PMC3344217

Qing, Y.; Zenan, Z.; Deyu, K.; Rongshen, C. (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21, 539-545.

Li, Z.; Wang, H.; He, S.; Lu, Y.; Wang, M. (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett. 60, 356-359.

Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y. (2012) Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36, 838-844.

Nazari. A.; Riahi, S. (2011) Effects of CuO nanoparticles on compressive strength of self-compacting concrete, Sadhana, 36, 371-391.

Nazari. A.; Riahi, S. (2011) Effects of CuO Nanoparticles on microstructure, physical, mechanical and thermal properties of self-compacting cementitious composites. J. Mater. Sci. Technol. 27, 81-92.

Nazari, A.; Rafieipour, M. H.; Riahi, S. (2011) The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder. Mater. Res. 14 [3], 307-316.

Miyandehi, B.M.; Feizbakhsh, A.; Yazdi, M.A.; Liu, Q.; Yang, J.; Alipour, P. (2016) Performance and properties of mortar mixed with nano-CuO and rice husk ash. Cem. Conc. Comp. 74, 225-235.

Ozdemir, M.; Uygan Ozturk, N. (2003) Utilization of clay wastes containing boron as cement additives. Cem. Concr. Res. 33, 1659-1661.

Kula, I.; Olgun, A.; Erdogan, Y.; Sevinc, V. (2001) Effects of colemanite waste, coal bottom ash, and fly ash on the properties of cement. Cem. Concr. Res. 31, 491-494.

TS EN 196-1 (2009) Methods of testing cement - Part 1: Determination of strength.

TS EN 480-2 (2008) Admixtures for concrete, mortar and grout - Test methods - Part 2: Determination of setting time.

Holley, J. C.; Paine, K.; Papatzani, S. (2014) Effects of nanosilica on the calcium silicate hydrates in Portland cement fly ash systems. Adv. Cem. Res.

BS 1881-122 (2011) Testing concrete: Method for determination of water absorption.

Singh, L.P.; Agarwal, S.K.; Bhattacharyya, S.K.; Sharma,U.; Ahalawat, S.; (2011) Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater. Nanotechno. 1, 44-51.

Erdogan, Y.; Zeybek, M.S.; Demirba_, A. (1998) Cement mixes containing colemanite from concentrator wastes. Cem. Concr. Res. 28, 605-609.

Khotbehsara, M.M.; Mohseni, E.; Yazdi, M.A.; Sarker, P.; Ranjbar, M.M. (2015) Effect of nano-CuO and fly ash on the properties of self-compacting mortar. Constr. Build. Mater. 94, 758-766.

Choudhary, H.K.; Anupama, A.V.; Kumar, R.; Panzi, M.E.; Matteppanavar, S.; Sherikar, B.N.; Sahoo, B. (2015) Observation of phase transformations in cement during hydration. Constr. Build. Mater. 101, 122-129.

Ghosh, S.N. (2002) IR spectroscopy: First edition in Handbook of analytical techniques in concrete science and technology, William Andrew Publishing, New York, (2002).

Barbhuiya, S.; Mukherjee, S.; Nikraz, H. (2014). Effects of nano-Al2O3 on early-age microstructural properties of cement paste. Constr. Build. Mater. 52, 189-193.

Vedalakshmi, R.; Sundara, Raj, A.; Palaniswamy, N. (2008) Identification of various chemical phenomena in concrete using thermal analysis. Indian J. Chem. Sect A, 15, 388-396.

Ramachandran, V.S.; Paroli, R.M.; Beaudoin, J.J.; Delgado, A.H. (2002) Handbook of thermal analysis of construction materials, Noyes Publications, New York, (2002).



How to Cite

Yildirim, M., & Derun, E. M. (2018). The influence of CuO nanoparticles and boron wastes on the properties of cement mortar. Materiales De Construcción, 68(331), e161.



Research Articles