Influencia de las nanopartículas de CuO y los residuos de boro en las propiedades de morteros de cemento
DOI:
https://doi.org/10.3989/mc.2018.03617Palabras clave:
Resistencias a compresión, Mortero, Análisis térmico, Tatamiento de residuos, Difracción de rayos XResumen
En este estudio, se investigaron las resistencias a compresión y flexión, las propiedades térmicas y las estructuras porosas de morteros modificados con dos tipos de residuos de boro y distintas cantidades de nanopartículas de CuO. Los morteros se prepararon con un 3 % de boro-yeso o residuos de boro y nano-CuO, en concentraciones de hasta el 4 %. Se realizaron ensayos de tiempo de fraguado, resistencias mecánicas a 3, 7 y 28 días, ATD/TG, DRX, area BET y absorción de agua y se determinaron los porcentajes óptimos de nano-CuO. Se observó que la adición de nano-CuO en el rango del 2 – 2,5 % mejora las propiedades mecánicas, reduce la cantidad de portlandita sin reaccionar, aumenta la resistencia de absorción del agua y disminuye el tiempo de fraguado en morteros que contienen residuos de boro. Los resultados muestran que el nano-CuO favorece las reacciones de hidratación, actua como nanofiller y proporciona un punto para las reacciones de nucleación.
Descargas
Citas
Lothenbach, B.; Scrivener, K.; Hooton R.D. (2011) Supplementary cementitious materials. Cem. Concr. Res. 41, 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001
Targan, S.; Olgun, A.; Erdogan, Y.; Sevinc, V. (2003) Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement. Cem. Concr. Res. 33, 1175-1182. https://doi.org/10.1016/S0008-8846(03)00025-5
Olgun, A.; Kavas, T.; Erdogan, Y.; Once, G. (2007) Physicochemical characteristics of chemically activated cement containing boron. Build. Environ. 42, 2384-2395. https://doi.org/10.1016/j.buildenv.2006.06.003
Topcu, I.B.; Boga, A.R. (2010) Effect of boron waste on the properties of mortar and concrete. Waste Manage. Res. 28, 626-633. https://doi.org/10.1177/0734242X09345561 PMid:19808737
Banar, M.; Gu ney, Y.; Ozkan, A.; Gu nkaya, Z.; Bayrak1c, E.; Ulutas, D. (2016) Utilization of waste clay from boron production in bituminous geosynthetic barrier (GBR-B) production as landfill liner. Int. J. Polym. Sci., Article ID 1648920. https://doi.org/10.1155/2016/1648920
Kula, I.; Olgun, A.; Sevinc, V.; Erdogan Y. (2002) An investigation on the use of tincal ore waste, f ly ash, and coal bottom ash as Portland cement replacement materials. Cem. Concr. Res. 32, 227-232. https://doi.org/10.1016/S0008-8846(01)00661-5
Oltulu, M.; ^ ahin, R. (2014) Pore structure analysis of hardened cement mortars containing silica fume and different nano-powders. Constr. Build. Mater. 53, 658-664. https://doi.org/10.1016/j.conbuildmat.2013.11.105
Oltulu, M.; ^ ahin, R. (2011) Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Mat. Sci. Eng. A- Struct. 528, 7012-7019. https://doi.org/10.1016/j.msea.2011.05.054
Senff, L.; Labrincha, J.A.; Ferreira, V.M.; Hotza, D.; Repette, W.L. (2009) Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23, 2487-2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005
Behfarnia, K.; Salemi, N. (2013) The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater. 48, 580-584. https://doi.org/10.1016/j.conbuildmat.2013.07.088
Oltulu, M.; ^ ahin, R. (2013) Effect of nano-SiO2, nano- Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study. Energy Buildings, 58, 292-301. https://doi.org/10.1016/j.enbuild.2012.12.014
Heikal, M.; Ismail, M.N.; Ibrahim, N.S. (2015) Physicomechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles. Constr. Build. Mater. 91, 232-242. https://doi.org/10.1016/j.conbuildmat.2015.05.036
Yu, R.; Spiesz, P.; Brouwers, H.J.H.; (2014) Effect of nanosilica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Constr. Build. Mater. 65, 140-150. https://doi.org/10.1016/j.conbuildmat.2014.04.063
Farzadnia, N.; Abang Ali, A.A.; Demirboga R.; (2013) Characterization of high strength mortars with nano alumina at elevated temperatures. Cem. Concr. Res. 54, 43-54. https://doi.org/10.1016/j.cemconres.2013.08.003
Jalal, M.; Fathi, M.; Farzad, M.; (2013) Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength selfcompacting concrete. Mech. Mater. 61, 11-27. https://doi.org/10.1016/j.mechmat.2013.01.010
Arefi, M.R.; Rezaei-Zarchi, S. (2012) Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites. Int. J. Mol. Sci.,13, 4340-4350. https://doi.org/10.3390/ijms13044340 PMid:22605981 PMCid:PMC3344217
Qing, Y.; Zenan, Z.; Deyu, K.; Rongshen, C. (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21, 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001
Li, Z.; Wang, H.; He, S.; Lu, Y.; Wang, M. (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett. 60, 356-359. https://doi.org/10.1016/j.matlet.2005.08.061
Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y. (2012) Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
Nazari. A.; Riahi, S. (2011) Effects of CuO nanoparticles on compressive strength of self-compacting concrete, Sadhana, 36, 371-391. https://doi.org/10.1007/s12046-011-0023-7
Nazari. A.; Riahi, S. (2011) Effects of CuO Nanoparticles on microstructure, physical, mechanical and thermal properties of self-compacting cementitious composites. J. Mater. Sci. Technol. 27, 81-92. https://doi.org/10.1016/S1005-0302(11)60030-3
Nazari, A.; Rafieipour, M. H.; Riahi, S. (2011) The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder. Mater. Res. 14 [3], 307-316. https://doi.org/10.1590/S1516-14392011005000061
Miyandehi, B.M.; Feizbakhsh, A.; Yazdi, M.A.; Liu, Q.; Yang, J.; Alipour, P. (2016) Performance and properties of mortar mixed with nano-CuO and rice husk ash. Cem. Conc. Comp. 74, 225-235. https://doi.org/10.1016/j.cemconcomp.2016.10.006
Ozdemir, M.; Uygan Ozturk, N. (2003) Utilization of clay wastes containing boron as cement additives. Cem. Concr. Res. 33, 1659-1661. https://doi.org/10.1016/S0008-8846(03)00138-8
Kula, I.; Olgun, A.; Erdogan, Y.; Sevinc, V. (2001) Effects of colemanite waste, coal bottom ash, and fly ash on the properties of cement. Cem. Concr. Res. 31, 491-494. https://doi.org/10.1016/S0008-8846(00)00486-5
TS EN 196-1 (2009) Methods of testing cement - Part 1: Determination of strength.
TS EN 480-2 (2008) Admixtures for concrete, mortar and grout - Test methods - Part 2: Determination of setting time.
Holley, J. C.; Paine, K.; Papatzani, S. (2014) Effects of nanosilica on the calcium silicate hydrates in Portland cement fly ash systems. Adv. Cem. Res.
BS 1881-122 (2011) Testing concrete: Method for determination of water absorption.
Singh, L.P.; Agarwal, S.K.; Bhattacharyya, S.K.; Sharma,U.; Ahalawat, S.; (2011) Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater. Nanotechno. 1, 44-51.
Erdogan, Y.; Zeybek, M.S.; Demirba_, A. (1998) Cement mixes containing colemanite from concentrator wastes. Cem. Concr. Res. 28, 605-609. https://doi.org/10.1016/S0008-8846(98)00018-0
Khotbehsara, M.M.; Mohseni, E.; Yazdi, M.A.; Sarker, P.; Ranjbar, M.M. (2015) Effect of nano-CuO and fly ash on the properties of self-compacting mortar. Constr. Build. Mater. 94, 758-766. https://doi.org/10.1016/j.conbuildmat.2015.07.063
Choudhary, H.K.; Anupama, A.V.; Kumar, R.; Panzi, M.E.; Matteppanavar, S.; Sherikar, B.N.; Sahoo, B. (2015) Observation of phase transformations in cement during hydration. Constr. Build. Mater. 101, 122-129. https://doi.org/10.1016/j.conbuildmat.2015.10.027
Ghosh, S.N. (2002) IR spectroscopy: First edition in Handbook of analytical techniques in concrete science and technology, William Andrew Publishing, New York, (2002).
Barbhuiya, S.; Mukherjee, S.; Nikraz, H. (2014). Effects of nano-Al2O3 on early-age microstructural properties of cement paste. Constr. Build. Mater. 52, 189-193. https://doi.org/10.1016/j.conbuildmat.2013.11.010
Vedalakshmi, R.; Sundara, Raj, A.; Palaniswamy, N. (2008) Identification of various chemical phenomena in concrete using thermal analysis. Indian J. Chem. Sect A, 15, 388-396.
Ramachandran, V.S.; Paroli, R.M.; Beaudoin, J.J.; Delgado, A.H. (2002) Handbook of thermal analysis of construction materials, Noyes Publications, New York, (2002).
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.