Influencia de las nanopartículas de CuO y los residuos de boro en las propiedades de morteros de cemento

Autores/as

DOI:

https://doi.org/10.3989/mc.2018.03617

Palabras clave:

Resistencias a compresión, Mortero, Análisis térmico, Tatamiento de residuos, Difracción de rayos X

Resumen


En este estudio, se investigaron las resistencias a compresión y flexión, las propiedades térmicas y las estructuras porosas de morteros modificados con dos tipos de residuos de boro y distintas cantidades de nanopartículas de CuO. Los morteros se prepararon con un 3 % de boro-yeso o residuos de boro y nano-CuO, en concentraciones de hasta el 4 %. Se realizaron ensayos de tiempo de fraguado, resistencias mecánicas a 3, 7 y 28 días, ATD/TG, DRX, area BET y absorción de agua y se determinaron los porcentajes óptimos de nano-CuO. Se observó que la adición de nano-CuO en el rango del 2 – 2,5 % mejora las propiedades mecánicas, reduce la cantidad de portlandita sin reaccionar, aumenta la resistencia de absorción del agua y disminuye el tiempo de fraguado en morteros que contienen residuos de boro. Los resultados muestran que el nano-CuO favorece las reacciones de hidratación, actua como nanofiller y proporciona un punto para las reacciones de nucleación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Lothenbach, B.; Scrivener, K.; Hooton R.D. (2011) Supplementary cementitious materials. Cem. Concr. Res. 41, 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001

Targan, S.; Olgun, A.; Erdogan, Y.; Sevinc, V. (2003) Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement. Cem. Concr. Res. 33, 1175-1182. https://doi.org/10.1016/S0008-8846(03)00025-5

Olgun, A.; Kavas, T.; Erdogan, Y.; Once, G. (2007) Physicochemical characteristics of chemically activated cement containing boron. Build. Environ. 42, 2384-2395. https://doi.org/10.1016/j.buildenv.2006.06.003

Topcu, I.B.; Boga, A.R. (2010) Effect of boron waste on the properties of mortar and concrete. Waste Manage. Res. 28, 626-633. https://doi.org/10.1177/0734242X09345561 PMid:19808737

Banar, M.; Gu ney, Y.; Ozkan, A.; Gu nkaya, Z.; Bayrak1c, E.; Ulutas, D. (2016) Utilization of waste clay from boron production in bituminous geosynthetic barrier (GBR-B) production as landfill liner. Int. J. Polym. Sci., Article ID 1648920. https://doi.org/10.1155/2016/1648920

Kula, I.; Olgun, A.; Sevinc, V.; Erdogan Y. (2002) An investigation on the use of tincal ore waste, f ly ash, and coal bottom ash as Portland cement replacement materials. Cem. Concr. Res. 32, 227-232. https://doi.org/10.1016/S0008-8846(01)00661-5

Oltulu, M.; ^ ahin, R. (2014) Pore structure analysis of hardened cement mortars containing silica fume and different nano-powders. Constr. Build. Mater. 53, 658-664. https://doi.org/10.1016/j.conbuildmat.2013.11.105

Oltulu, M.; ^ ahin, R. (2011) Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume. Mat. Sci. Eng. A- Struct. 528, 7012-7019. https://doi.org/10.1016/j.msea.2011.05.054

Senff, L.; Labrincha, J.A.; Ferreira, V.M.; Hotza, D.; Repette, W.L. (2009) Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Constr. Build. Mater. 23, 2487-2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005

Behfarnia, K.; Salemi, N. (2013) The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater. 48, 580-584. https://doi.org/10.1016/j.conbuildmat.2013.07.088

Oltulu, M.; ^ ahin, R. (2013) Effect of nano-SiO2, nano- Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study. Energy Buildings, 58, 292-301. https://doi.org/10.1016/j.enbuild.2012.12.014

Heikal, M.; Ismail, M.N.; Ibrahim, N.S. (2015) Physicomechanical, microstructure characteristics and fire resistance of cement pastes containing Al2O3 nano-particles. Constr. Build. Mater. 91, 232-242. https://doi.org/10.1016/j.conbuildmat.2015.05.036

Yu, R.; Spiesz, P.; Brouwers, H.J.H.; (2014) Effect of nanosilica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Constr. Build. Mater. 65, 140-150. https://doi.org/10.1016/j.conbuildmat.2014.04.063

Farzadnia, N.; Abang Ali, A.A.; Demirboga R.; (2013) Characterization of high strength mortars with nano alumina at elevated temperatures. Cem. Concr. Res. 54, 43-54. https://doi.org/10.1016/j.cemconres.2013.08.003

Jalal, M.; Fathi, M.; Farzad, M.; (2013) Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength selfcompacting concrete. Mech. Mater. 61, 11-27. https://doi.org/10.1016/j.mechmat.2013.01.010

Arefi, M.R.; Rezaei-Zarchi, S. (2012) Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites. Int. J. Mol. Sci.,13, 4340-4350. https://doi.org/10.3390/ijms13044340 PMid:22605981 PMCid:PMC3344217

Qing, Y.; Zenan, Z.; Deyu, K.; Rongshen, C. (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr. Build. Mater. 21, 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001

Li, Z.; Wang, H.; He, S.; Lu, Y.; Wang, M. (2006). Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite. Mater. Lett. 60, 356-359. https://doi.org/10.1016/j.matlet.2005.08.061

Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y. (2012) Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044

Nazari. A.; Riahi, S. (2011) Effects of CuO nanoparticles on compressive strength of self-compacting concrete, Sadhana, 36, 371-391. https://doi.org/10.1007/s12046-011-0023-7

Nazari. A.; Riahi, S. (2011) Effects of CuO Nanoparticles on microstructure, physical, mechanical and thermal properties of self-compacting cementitious composites. J. Mater. Sci. Technol. 27, 81-92. https://doi.org/10.1016/S1005-0302(11)60030-3

Nazari, A.; Rafieipour, M. H.; Riahi, S. (2011) The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder. Mater. Res. 14 [3], 307-316. https://doi.org/10.1590/S1516-14392011005000061

Miyandehi, B.M.; Feizbakhsh, A.; Yazdi, M.A.; Liu, Q.; Yang, J.; Alipour, P. (2016) Performance and properties of mortar mixed with nano-CuO and rice husk ash. Cem. Conc. Comp. 74, 225-235. https://doi.org/10.1016/j.cemconcomp.2016.10.006

Ozdemir, M.; Uygan Ozturk, N. (2003) Utilization of clay wastes containing boron as cement additives. Cem. Concr. Res. 33, 1659-1661. https://doi.org/10.1016/S0008-8846(03)00138-8

Kula, I.; Olgun, A.; Erdogan, Y.; Sevinc, V. (2001) Effects of colemanite waste, coal bottom ash, and fly ash on the properties of cement. Cem. Concr. Res. 31, 491-494. https://doi.org/10.1016/S0008-8846(00)00486-5

TS EN 196-1 (2009) Methods of testing cement - Part 1: Determination of strength.

TS EN 480-2 (2008) Admixtures for concrete, mortar and grout - Test methods - Part 2: Determination of setting time.

Holley, J. C.; Paine, K.; Papatzani, S. (2014) Effects of nanosilica on the calcium silicate hydrates in Portland cement fly ash systems. Adv. Cem. Res.

BS 1881-122 (2011) Testing concrete: Method for determination of water absorption.

Singh, L.P.; Agarwal, S.K.; Bhattacharyya, S.K.; Sharma,U.; Ahalawat, S.; (2011) Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater. Nanotechno. 1, 44-51.

Erdogan, Y.; Zeybek, M.S.; Demirba_, A. (1998) Cement mixes containing colemanite from concentrator wastes. Cem. Concr. Res. 28, 605-609. https://doi.org/10.1016/S0008-8846(98)00018-0

Khotbehsara, M.M.; Mohseni, E.; Yazdi, M.A.; Sarker, P.; Ranjbar, M.M. (2015) Effect of nano-CuO and fly ash on the properties of self-compacting mortar. Constr. Build. Mater. 94, 758-766. https://doi.org/10.1016/j.conbuildmat.2015.07.063

Choudhary, H.K.; Anupama, A.V.; Kumar, R.; Panzi, M.E.; Matteppanavar, S.; Sherikar, B.N.; Sahoo, B. (2015) Observation of phase transformations in cement during hydration. Constr. Build. Mater. 101, 122-129. https://doi.org/10.1016/j.conbuildmat.2015.10.027

Ghosh, S.N. (2002) IR spectroscopy: First edition in Handbook of analytical techniques in concrete science and technology, William Andrew Publishing, New York, (2002).

Barbhuiya, S.; Mukherjee, S.; Nikraz, H. (2014). Effects of nano-Al2O3 on early-age microstructural properties of cement paste. Constr. Build. Mater. 52, 189-193. https://doi.org/10.1016/j.conbuildmat.2013.11.010

Vedalakshmi, R.; Sundara, Raj, A.; Palaniswamy, N. (2008) Identification of various chemical phenomena in concrete using thermal analysis. Indian J. Chem. Sect A, 15, 388-396.

Ramachandran, V.S.; Paroli, R.M.; Beaudoin, J.J.; Delgado, A.H. (2002) Handbook of thermal analysis of construction materials, Noyes Publications, New York, (2002).

Publicado

2018-09-30

Cómo citar

Yildirim, M., & Derun, E. M. (2018). Influencia de las nanopartículas de CuO y los residuos de boro en las propiedades de morteros de cemento. Materiales De Construcción, 68(331), e161. https://doi.org/10.3989/mc.2018.03617

Número

Sección

Artículos