Consolidation with ethyl silicate: how the amount of product alters the physical properties of the bricks and affects their durability




Brick, Weathering, Physical properties, Durability


We evaluated the consolidating capacity of ethyl silicate in three types of bricks fired at 800, 950 and 1100 °C. We chose two concentrations of product, at 25% and 50%, diluting the product in white spirit to estimate whether greater dilution enables the product to penetrate deeper into the bricks, or whether a higher concentration leads to better consolidation of bricks. The application of ethyl silicate caused bricks porosity to decline and their compactness to increase. These changes were more accentuated as the concentration of the product increased. The pore size distribution not changed substantially except that there were fewer of the smallest pores. The color and the lightness of the pieces changed after application of the consolidant, albeit slightly. The durability of bricks improved as manifested by the results of the salt crystallization test. In general, the longest-lasting pieces were those treated with 25% ethyl silicate.


Download data is not yet available.


Winkler, E. M. (1973) Stone: properties, durability in man's environment. Springer, New York.

Alves, C.; Sanjurjo Sánchez, J. (2015) Maintenance and Conservation of Materials in the Built Environment. In: Pollutants in Buildings, Water and Living Organisms (Lichtfouse E., Schwarzbauer J., Robert D. eds.). Springer, Cham, pp. 1–50.

Lazzarini, L.; Laurenzi Tabasso, M. (1986) Il restauro della pietra. CEDAM, Padova.

Snethlage, R. (2014) Stone Conservation. In: Stone in architecture. Properties, duarability (Siegesmund, S. and Snethlage, R. eds.). Springer, Berlin, pp. 415–550.

Sierra Fernandez, A.; Gomez Villalba, L. S.; Rabanal, E. M. E.; Fort, R. (2017) New nanomaterials for application and restoration of stony materials: a review. Mater. Construcc. 67, e107.

Esbert, R. M.; Grossi, C.; Marcos, R. M. (1987) Estudios experimentales sobre la consolidación y protección de los materiales calcáreos de la Catedral de Oviedo. 1ª parte. Mater. Construcc. 37, 17–25.

Esbert, R. M.; Díaz Pache, F. (1993) Influencia de las características petrofísicas en la penetración de consolidantes en rocas monumentales porosas. Mater. Construcc. 43, 25–36.

Cultrone, G.; Madkour, F. (2013) Evaluation of the effectiveness of treatment products in improving the quality of ceramics used in new and historical buildings. J. Cult. Herit. 14, 304–310.

Marques, M. L.; Chastre, C. (2014) Effect of consolidation treatments on mechanical behaviour of sandstone. Constr. Build. Mater. 70, 473–482.

Cnudde, V.; Dierick, M.; Masschaele, B.; Jacobs P. J. (2006) A high resolution view at water repellents and consolidants: critical review and recent developments. In: fracture and failure of natural building stones (Kourkoulis, S. K. ed.), Springer, Dordrecht, pp. 519–540.

Warren, J. (1999) Conservation of brick. Butterworth Heinemann, Oxford, UK.

Manning, D. A. C. (1995) Introduction to industrial minerals. Chapman & Hall, London, UK.

Cultrone, G.; Sebastián, E.; Elert, K.; Torre, M. J. de la; Cazalla, O.; Rodríguez Navarro, C. (2004) Influence of mineralogy and firing temperature on porosity of bricks. J. Eur. Ceram. Soc. 24, 547–564.

Mu-oz Velasco, P.; Morales Ortíz, M.P.; Mendívil Giró, M.A.; Mu-oz Velasco, L. (2014) Fired clay bricks manufactured by adding wastes as sustainable construction material. A review. Constr. Build. Mater. 63, 97–107.

Cultrone, G.; Rodriguez Navarro, C.; Sebastián, E.; Cazalla, O.; Torre, M. J. de la (2001) Carbonate and silicate phase reactions during ceramic firing. Eur. J. Mineral. 13, 621–634.

Grapes, R. (2006) Pyrometamorphism. Springer, Berlin, Germany. PMCid:PMC1456285

Liu, R.; Han, X.; Huang, X.; Li, W.; Luo, H. (2013) Preparation of three component TEOS-based composites for stone conservation by sol-gel process. J Sol-Gel Sci. Technol. 68, 19–30.

Villegas Sánchez, R.; Baglioni, R.; Same-o Puerto, M. (2003) Tipología de materiales para tratamiento. In: Cuadernos Técnicos vol. 8: Metodología de diagnóstico y evaluación de tratamientos para la conservación de los edificios históricos (Villegas Sánchez R. y Sebastián Pardo E., eds.), Comares, Granada, Spain, pp. 168–193.

Scherer, G. W.; Wheeler, G. S. (2009) Silicate consolidants for stone. Key Eng. Mater. 391, 1–25.

Franzoni, E.; Graziani, G.; Sassoni, E. (2015) TEOSbased treatments for stone consolidation: acceleration of hydrolysis-condensation reactions by poulticing. J. Sol- Gel Sci. Technol. 74, 398–405.

Franzoni, E.; Pigino B.; Leemann, A.; Lura P. (2014) Use of TEOS for fired-clay bricks consolidation. Mater. Struct. 47, 1175–1184.

Franzoni, E.; Graziani, G.; Sassoni, E.; Bacilieri, G.; Griffa, M.; Lura, P. (2015) Solvent-based ethyl silicate for stone consolidation: influence of the application technique on penetration deep, efficacy and pore occlusion. Mater. Struct. 48, 3503–3515.

Torraca, G. (2009) Lectures on materials science for architectural conservation. The Getty Conservation Institute, Los Angeles, USA.

Elert, K.; Sebastián Pardo, E.; Rodriguez Navarro, C. (2015) Alkaline activation as an alternative method for the consolidation of earthen architecture. J. Cult. Herit. 16, 461–469.

Bermúdez Sánchez, C.; Rueda Quero, L.; Cultrone, G. (2012) Caracterización de los yacimientos de arcilla en la provincial de Granada aplicada al conocimiento de los bienes de interés histórico-artístico. Proceedings of the I International Congress "El Patrimonio Natural como Motor de Desarrollo: Investigación e Innovación" (Peinado Herreros M. A. ed.), 728–740.

De Rosa, B.; Cultrone, G. (2014) Assessment of two clayey materials from northwest Sardinia (Alghero district, Italy) with a view to their extraction and use in traditional brick production. Appl. Clay Sci. 88–89, 100–110.

Martin, J. D. (2016) XPowder, XPowder12, XPowderXTM. A software package for powder X-ray diffraction analysis, Lgl. Dp. GR-780–2016.

ASTM D2845. (2005) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constant of rock, USA.

Guydader, J.; Denis, A. (1986) Propagation des ondes dans les roches anisotropies sous contrainte évaluation de la qualité des schistes ardoisers. Bull. Eng. Geol. 33 49–55.

EN 15886. (2011) Conservation of cultural property. Test methods. Colour measurement of surfaces, AENOR, Madrid.

EN 12370. (2001) Metodi di prova per pietre naturali. Determinazione della resistenza alla cristallizzazione dei sali. CNR-ICR, Rome, Italy.

Espinosa Marzal, R.M.; Hamilton, A.; McNall, M.; Whitaker, K.; Scherer, G.W. (2011) The chemomehanics of crystallization during rewetting of limestone impregnated with sodium sulfate. J. Mater. Res. 26, 1472–1481.

Martinez, P.; Soto, M.; Zunino, F.; Stuckrath, C.; Lopez, M. (2016) Effectiveness of tetra-ethyl-ortho-silicate (TEOS) consolidation of fired-clay bricks manufactured with different calcination temperatures. Constr. Build. Mater. 106, 209–217.

Kingery, W. D. (1960) Introduction to ceramics. John Wiley & Sons, Inc., New York.

Ediz, N.; Bentli, I.; Tatar, I. (2010) Improvement in filtration characteristics of diatomite by calcination. Int. J. Miner. Process. 94, 129–134.

Ferraz, E.; Coroado, J.; Silva, J.; Gomes, C.; Rocha, F. (2011) Manufacture of ceramic bricks using recycled Brewing spent kieselguhr. Mater. Manuf. Processes 26, 1319–1329.

Ferreira Pinto, A. P.; Delgado Rodrigues, J. (2008) Stone consolidation: the role of treatment procedures. J. Cult. Herit. 9, 38–53.

Costa, D.; Leal, A. S.; Mimoso, J. M.; Pereira, S. M. R. (2017) Consolidation treatments applied to ceramic tiles: are they homogeneous? Mater. Construcc. 67, e113.

Bourret, J.; Tesser Doyen, N.; Guinebretiere, R.; Joussein, E.; Smith, D.S. (2015) Anisotropy of thermal conductivity and elastic properties of extruded clay-based materials: evolution with thermal treatment. Appl. Clay Sci. 116–117, 150–157.

Ferreira Pinto, A. P.; Delgado Rodrigues, J. (2012) Consolidation of carbonate stones: influence of treatment procedures on the strengthening of consolidants. J. Cult. Herit. 13, 154–166.

Esbert, R. M.; Ordaz, J.; Alonso, F. J.; Montoto, M. (1997) Manual de diagnosis y tratamiento de materiales pétreos y cerámicos. Col.legi d'Aparelladors i Arquitectes Tècnics de Barcelona.

Rodriguez Navarro, C.; Cultrone, G.; Sanchez Navas, A.; Sebastián , E. (2003) TEM study of mullite growth after muscovite breakdown. Am. Mineral. 88, 713–724.

Papargyris, A.D.; Cooke, R.G.; Papargyri, S.A.; Botis, A.I. (2001) The acoustic behavior of bricks in relation to their mechanical behavior. Constr. Build. Mater. 15, 361–369.

Rye, O.S. (1976) Keeping your temper under control: materials and manufacture of Papuan pottery. Archeol. Phys. Anthropol. Oceania 11, 106–137.

Grossi, C.M.; Brimblecombe, P.; Esbert, R.M.; Alonso, F.J. (2007) Color changes in architectural limestones from pollution and cleaning, Color Res. Appl. 32, 320–331.

Dohene, E.; Price, C.A. (2010) Stone conservation. An overview of current research. The Getty Conservation Institute, Los Angeles, USA.

Inkpen, R. J.; Petley, D.; Murphy, W. (2004) Durability and rock properties. In: Stone decay. Its causes and controls (Smith B. J. and Turkington A. V. eds.). Donhead Publishing Ltd., Routledge, Abingdon, UK. PMid:15534554



How to Cite

Cultrone, G., & Sánchez-Ibáñez, V. (2018). Consolidation with ethyl silicate: how the amount of product alters the physical properties of the bricks and affects their durability. Materiales De Construcción, 68(332), e173.



Research Articles