Archaeometric investigation and evaluation of the decay of ceramic materials from the church of Santa Maria del Carmine in Pavia, Italy


  • M. Setti Dipartimento di Scienze della Terra, Università degli Studi di Pavia
  • A. Lanfranchi Dipartimento di Scienze della Terra, Università degli Studi di Pavia
  • G. Cultrone Departamento de Mineralogía y Petrología, Universidad de Granada
  • L. Marinoni Dipartimento di Scienze della Terra, Università degli Studi di Pavia



Ceramic, Petrography, Pore size distribution, Decay


We performed an archaeometric study of the ceramic materials from the façade of the church of Santa Maria del Carmine in Pavia (Italy). We obtained useful information about the firing temperatures, the provenance of raw materials and the type of oven used. The ceramics used in the façade are mineralogically rich in quartz, feldspar and phyllosilicates, and newly formed calcium silicate phases were detected in some samples. Microtextural observations revealed the presence of incipient reaction rims, phyllosilicate sintering and partial vitrification of the matrix. Ceramics show high porosity (32 to 45%) and pore sizes of between 0.4 and 1.3 µm. Our study of the different types of decay collected on the façade of the church (green and black patinas and efflorescences) revealed the presence of gypsum, whewellite, thenardite and moolooite.


Download data is not yet available.


(1) Cardiano, P.; Ioppolo, S.; De Stefano, C.; Pettignano, A.; Sergi, S.; Piraino, P.: “Study and characterization of the ancient bricks of Monastery of San Filippo di Fragalà in Frazzanò (Sicily)”, Anal. Chim. Acta, 519 (2004), pp. 103-111. doi:10.1016/j.aca.2004.05.042

(2) Cultrone, G.; Sebastian, E.; Elert, K.; De La Torre, M. J.; Cazalla, O.; Rodriguez-Navarro, C.: “Influence of mineralogy and firing temperature on the porosity of bricks”, J. Eur. Ceram. Soc., Vol. 24 (2004), pp. 547-564. doi:10.1016/S0955-2219(03)00249-8

(3) Elert, K.; Cultrone, G.; Rodriguez Navarro, C.; Sebastian Pardo, E.: “Durability of bricks used in the conservation of historic buildings-influence of composition and microstructure”, J. Cult. Heritage, Vol. 4 (2003), pp. 91-99. doi:10.1016/S1296-2074(03)00020-7

(4) Benavente, D.; Cultrone, G.; Gómez-Heras, M.: “The combined influence of mineralogical, hygric and thermal properties on the durability of porous building stones”, Eur. J. Miner., Vol. 20 (2008), pp. 673-685. doi:10.1127/0935-1221/2008/0020-1850

(5) Setti, M.; Nicola, C.; Lopez-Galindo, A.; Lodola, S.; Maccabruni, C.; Veniale, F.: “Investigación arqueométrica de los ladrillos de las antiguas murallas defensivas de la ciudad de Pavía (norte de Italia)”, Mater. Construc., Vol. 283 (2006), pp. 5-23.

(6) Veniale, F.: “Modern techniques of analysis applied to ancient ceramics”, Proc. Advanced Workshop ICOMOS-CE “Analytical methodologies for the investigation of damaged stones”, Pavia. [F. Veniale and U. Zezza (eds.)], (1990), pp. 1-45.

(7) Veniale, F.: Raw materials and manufacturing processes in ancient ceramic artifacts, First European Workshop on Archaeological Ceramics, Rome, (1994).

(8) Velde, B.; Druc, I. C.: “Archaeological ceramic materials: origin and utilization”, Springer, (1999).

(9) Pavía, S.: “The determination of brick provenance and technology using analytical techniques from the physical sciences”, Archaeometry, Vol. 48 (2006), pp. 201-218. doi:10.1111/j.1475-4754.2006.00251.x

(10) Pearce, M.; Meloni, S.; Setti, M.; Genova, N.; Oddone, M.; Muggia, A.: “A multidisciplinary investigation of Roman bricks from the Torre Civica of Pavia (NW Italy)”, Sci. Tech. Cultural Heritage, Vol. 5 (1996), pp. 19-27.

(11) Maggetti, M.: “Mineralogical and petrographical methods for the study of ancient pottery”, in: First European Workshop on Archaeological Ceramics, Rome, pp. 23-35, (1994).

(12) Maage, M.: “Frost resistance and pore size distribution in bricks”, Mater. Struc., 1984, 345-350.

(13) Cultrone, G.; de la Torre, M. J.; Sebastián, E.: Evaluación de la durabilidad de ladrillos mediante técnicas destructivas (TD) y no-destructivas (TND). Mater. Construc., Vol. 53 (2003), 41-59. doi:10.3989/mc.2003.v53.i269.267

(14) Erba, L.: Le Chiese di Pavia - Santa Maria del Carmine, p.19, Tipografia Commerciale Pavese, 2001.

(15) Gianani, F.: Il Carmine di Pavia: storia e guida del monumento, pp. 9-41, (1962).

(16) “Munsell's Rock Color Chart”, (2nd printing), Geol. Soc. Amer.; (1951).

(17) Culliti, B. D.; Elements of X-ray Diffraction. Addison-Wesley, Reading, MA, 1956.

(18) Rodriguez Gallego, M.; Martin-Pozas, J. M.; Martin Vivaldi, J. L.: “Análisis cuantitativo de filosilicatos de la arcilla por difracción de rayos X: Influencia de las sustituciones isomórficas y cristalinidad”, Anu. Real Soc. Esp. Fis. Qui., Vol. 65 (1968), pp. 25-29.

(19) Kempe, D. R. C.; Harvey, A. P.: “The petrology of archaeological artifact”. Claredon, (1983).

(20) Rodriguez Navarro, C.; Cultrone, G.; Sánchez Navas, A.; Sebastián, E.: “TEM study of mullite growth after muscovite breakdown”, American Mineralogist, Vol. 88 (2003), pp. 713-724.

(21) Cairo, A.; Meloni, S.; Messiga, B.; Oddone, M.; Riccardi, M. P.: “Manufacturing of roman ceramic artefacts in Po River plane: a multianalytical approach”, Revue d'Archeometrie, Vol. 26 (2002), pp. 23-31.

(22) Catalogo delle Argille in Italia: Edited by S. Fiore, AIPEA, Incontri Scientifici IV, (2002), 226 pp.

(23) Caucia, F.; Marinoni, L.:”Composizione mineralogica e granulometrica dei terreni delle risaie del Pavese e del Novarese. (mineralogical and grain size composition of the rice-field soils of Pavia and Novara)”, Micro, (2004), pp. 13-24.

(24) Cultrone, G.; Rodríguez-Navarro, C.; Sebastián, E.; Cazalla, O.; De La Torre, M. J.: “Carbonate and silicate phase reactions during ceramic firing”, Eur. J. Miner., Vol. 13 (2001), pp. 621-634. doi:10.1127/0935-1221/2001/0013-0621

(25) Duminuco, P.; Messiga, B.; Riccardi, M. P.: “Firing process of natural clays. Some microtextures and related phase compositions”, Thermochimica Acta, Vol. 321 (1998), pp. 185-190. doi:10.1016/S0040-6031(98)00458-4

(26) Tite, M. S.: “Firing temperature determinations. How and why?”, KVHAA Konf., Stockholm, 34, (1995), pp. 37-42.

(27) Letsch, J.; Noll, W.: “Phasenbildung in einigen keramischen Teilsystemen bei 600-1000°C in Abhängigkeit von Sauerstoffugazität”. Ceramic Forum Int. Ber. dtsch. keram. Ges., 60, Helf 7, (1983).

(28) Evans, J. L.; White, J.: “Further studies of the thermal decomposition of clays”, Trans. British Ceramic Soc., Vol. 57 (1958), pp. 298.

(29) Guggenheim, S.; Chang, Y. H.; Koster Van Groos, A. F.: “Muscovite dehydroxylation: high-temperature studies”, Am. Mineral., Vol. 72 (1987), pp. 537-550.

(30) Boynton, R. S.; Chemistry and Technology of Lime and Limestone, 2nd Ed., Wiley, New York, 1980.

(31) Tite, M. S.: “The impact of electron microscopy on ceramic studies”, Proc. Brit. Acad, Vol. 77, (1992), pp. 111-131.

(32) Delbrouck, O.; Janssen, J.; Ottenburgs, R.; Van Oyen, P.; Viaene, W.: “Evolution of porosity in extruded stoneware as a function of firing temperature”, Appl. Clay Sci., Vol. 8 (1993), pp. 187-192. doi:10.1016/0169-1317(93)90036-Z

(33) Laird, R. T.; Worcerster, M.: “The inhibiting of lime blowing”, Tran. Brit. Ceram. Soc., Vol. 55 (1956), pp. 545-563.

(34) Özkaya, Ö.; Böke, H.: “Properties of Roman bricks and mortars used in Serapis Temple in the city of Pergamon”, Materials Characterization, Vol. 60 (2009), pp. 995-1000. doi:10.1016/j.matchar.2009.04.003

(35) Miriello, D.; Crisci, G. M.: “Mixing and provenance of raw materials in the bricks from the Svevian castle of Rocca Imperiale (North Calabria, Italy)”, Eur. J. Miner., Vol. 19 (2007), pp. 137-144. doi:10.1127/0935-1221/2007/0019-0137

(36) Pavía, S.; Roundtree, S.: “An investigation into Irish historical ceramics: the brick of Arch Hall, Wilkinstown, Co. Meath”, Proceedings of the Royal Irish Academy, 105C, (6), (2005), pp. 221-242. PMid:18422339

(37) Montagna, G.: I pigmenti. Prontuario per l'arte e il restauro, Nardini Editore, Fiesole (FI), (1993).

(38) Castro, K.; Sarmiento, A.; Martinez-Arkarazo, I.; Madariaga, J. M.; Fernandez, L. A.: “Green copper pigments biodegradation in cultural heritage: from malachite to moolooite, thermodynamic modelling, X-ray fluorescence, and Raman evidence”, Anal. Chem., Vol. 80 (2008), pp. 4103-4110. doi:10.1021/ac800255w

(39) Maravelaki-Kalaitzaki, P.: “Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): characterization and origin”, Anal. Chim. Acta, Vol. 532 (2005), pp. 187-198. doi:10.1016/j.aca.2004.10.065

(40) Rodriguez Navarro, C.; Doehne, E.; Sebastian, E.: “How does sodium sulfate crystallize? Implications for the decay and testing of building materials”, Cem. Concr. Res., Vol. 30 (2000), pp. 1527-1534. doi:10.1016/S0008-8846(00)00381-1

(41) Winkler, E. M.; Singer, P. C.: “Crystallization pressure of salt stone and concrete”, Geol. Soc. Amer. Bull., Vol. 83 (1972), pp. 3509-3514. doi:10.1130/0016-7606(1972)83[3509:CPOSIS]2.0.CO;2

(42) Whitney D. L.; Evans B. W.: “Abbreviations for names of rock-forming minerals. Am. Miner., Vol. 95 (2010), pp. 185-187. doi:10.2138/am.2010.3371




How to Cite

Setti, M., Lanfranchi, A., Cultrone, G., & Marinoni, L. (2012). Archaeometric investigation and evaluation of the decay of ceramic materials from the church of Santa Maria del Carmine in Pavia, Italy. Materiales De Construcción, 62(305), 79–98.



Research Articles

Most read articles by the same author(s)