Pozzolanic activity of argentine vitreous breccia containing mordenite





Pozzolan, Petrography, Blended cement, Hydration, Scanning Electron Microscopy (SEM)


A vitreous breccia with variable amount of mordenite was studied for its use as pozzolan. The raw material was characterized by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and the zeolite content was estimated by the methylene blue staining technique. After being ground, physical characteristics, cation exchange capacity (CEC), pozzolanicity, and the compressive strength activity index (SAI) were determined. The staining technique and the CEC measurement were used to evaluate the average content of zeolite. The vitreous breccia has pozzolanic activity after 7 days, the water demand increases slightly, and its addition stimulates the early hydration of portland cement. At later ages, the pozzolanic reaction around the grains, as revealed by SEM studies, improves the compressive strength of blended cements having a SAI > 0.85 at 28 days.


Download data is not yet available.


Scrivener, K.L.; John, V.M.; Gartner, E.M. (2017) Eco-efficient cements: Potential economically viable solutions for low-CO2 cement-based materials industry, Revised Edition, United Nations Environment Programme, Paris, France. https://doi.org/10.1016/j.cemconres.2018.03.015

Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. (2008) Sustainable development and climate change initiatives. Cem. Concr. Res. 38[2], 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008

Valipour, M.; Yekkalar, M.; Shekarchi, M.; Panahi, S. (2014) Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. J. Clean Prod. 65, 418-423. https://doi.org/10.1016/j.jclepro.2013.07.055

ACI Committee 232 (2012) Report on the use of raw or processed natural pozzolans in concrete, ACI 232.1R, American Concrete Institute, Farmington Hills, USA.

Massazza, F. (1998) Pozzolana and pozzolanic cements, In: Hewlett, P.C. (Ed.), Lea's Chemistry of Cement and Concrete, Elsevier, Amsterdam, pp. 471-635. https://doi.org/10.1016/B978-075066256-7/50022-9

Passaglia, E.; Sheppard, R.A. (2001) The crystal chemistry of zeolites. In: Bish, D.L.; Ming, D.W. (Eds.), Natural zeolites: occurrences, properties, applications. Reviews in Mineralogy and Geochemistry 45, Mineralogical Society of America, Chantilly, USA, pp. 69-116. https://doi.org/10.1515/9781501509117-004

Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, J.D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G. (1998) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names, Miner. Mag. 62[4], 533-571. https://doi.org/10.1180/002646198547800

Bish, D.L.; Carey, J.W. (2001) Thermal behavior of natural zeolites. In: Bish, D.L.; Ming, D.W. (Eds.), Natural zeolites: occurrences, properties, applications. Reviews in Mineralogy and Geochemistry 45, Mineralogical Society of America, Chantilly, USA, pp. 403-452. https://doi.org/10.1515/9781501509117-015

Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. (2003) Handbook of zeolite science and technology, Marcel Dekker, Inc., New York, 2003. https://doi.org/10.1201/9780203911167

Colella, A.; Di Benedetto, C.; Calcaterra, D.; Cappelletti, P.; D'Amore, M.; Di Martire, D.; Graziano, S.F.; Papa, L.; de Gennaro, M.; Langella, A. (2017) The Neapolitan Yellow Tuff: An outstanding example of heterogeneity. Constr. Build. Mater. 136[1], 361-373. https://doi.org/10.1016/j.conbuildmat.2017.01.053

Fragoulis, D.; Chaniotakis, E.; Stamatakis, M.G. (1997) Zeolitic tuffs of Kimolos Island, Aegean Sea, Greece and their industrial potential. Cement Concrete Res. 27[6], 889-905. https://doi.org/10.1016/S0008-8846(97)00072-0

Mertens, G.; Snellings, R.; Van Balen, K.; Bicer-Simsir, B.; Verlooy, P.; Elsen, J. (2009) Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem. Concr. Res. 39[3], 233-240. https://doi.org/10.1016/j.cemconres.2008.11.008

Vigil de la Villa, R.; Fernández, R.; García, R.; Villar-Cociña, E.; Frías, M. (2009) Pozzolanic activity and alkaline reactivity of a mordenite-rich tuff. Micropor. Mesopor. Mat. 126[1-2], 125-132. https://doi.org/10.1016/j.micromeso.2009.05.029

Janotka, I.; Mojumdar; S.C. (2003) Hydration of portland cement, natural zeolite mortar in water and sulphate solution. Mater. Construcc. 53[269], 17-27. https://doi.org/10.3989/mc.2003.v53.i269.265

Snellings, R.; Mertens, G.; Cizer, Ö.; Elsen, J. (2010) Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction. Cem. Concr. Res. 40[12], 1704-1713. https://doi.org/10.1016/j.cemconres.2010.08.012

Cornejo, M.H.; Elsen, J.; Paredes, C.; Baykara, H. (2015) Hydration and strength evolution of air-cured zeolite-rich tuffs and siltstone blended cement pastes at low water-to-binder ratio. Clay Min. 50[1], 133-152. https://doi.org/10.1180/claymin.2015.050.1.12

Özen, S.; Göncüo?lu, M.C.; Liguori, B.; de Gennaro, B.; Cappelletti, P.; Gatta, G.D.; Iucolano, F.; Colella, C. (2016) A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement- and lime-based binders. Constr. Build. Mater. 105, 46-61. https://doi.org/10.1016/j.conbuildmat.2015.12.055

Chen, J.J.; Li, L.G.; Ng, P.L.; Kwan, A.K.H. (2017) Effects of superfine zeolite on strength, flowability and cohesiveness of cementitious paste. Cem. Concr. Comp. 83, 101-110. https://doi.org/10.1016/j.cemconcomp.2017.06.010

Snellings, R.; Mertens, G.; Gasharova, B.; Garbev, K.; Elsen, J. (2010) The pozzolanic reaction between clinoptilolite and portlandite: a time and spatially resolved IR study. Eur. J. Mineral. 22[6], 767-777. https://doi.org/10.1127/0935-1221/2010/0022-2019

Poon, C.S.; Lam, L.; Kou, S.C.; Lin, Z.S. (1999) A study on the hydration rate of natural zeolite blended cement pastes. Constr. Build. Mater. 13[8], 427-432. https://doi.org/10.1016/S0950-0618(99)00048-3

Najimi, M.; Sobhani, J.; Ahmadi, B.; Shekarchi, M. (2012) An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr. Build. Mater. 35, 1023-1033. https://doi.org/10.1016/j.conbuildmat.2012.04.038

Gargiulo, M.; Crosta, S.; Leal, P.; Vattuone, M. (2017) Las zeolitas naturales de Argentina. In: Costafedra Mustelier, J.L.; Sánchez, D.A.M.; Costafedra Velázquez, J.L. (Eds.), Las zeolitas naturales de Iberoamérica, Fundación Gómez Pardo, Madrid, 58-136.

Raggiotti, B.B.; Positieri, M.J.; Locati, F.; Murra, J.; Marfil, S. (2015) Zeolite, study of aptitude as a natural pozzolan applied to structural concrete, Rev. Construcc. 14[2], 14-20. https://doi.org/10.4067/S0718-915X2015000200002

Locati, F.; Falcone, D.; Marfil, S.; Raggiotti, B. (2015) Use of natural zeolites as ASR inhibitor in basaltic rocks. In: Villagrán-Zaccardi, Y.; Zega, C.; Torrijos, M.C. (Eds.), International Conference on Sustainable Structural Concrete (Sustain Concrete 2015), RILEM-LEMIT, La Plata, Argentina,. 381-392.

Rasband, W.S. (2018) ImageJ, U.S. National Institute of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/

ASTM C430 (2017) Standard test method for fineness of hydraulic cement by the 45-?m (No. 325) sieve, ASTM International, West Conshohocken, PA, USA.

ASTM C188 (2017) Standard test method for density of hydraulic cement, ASTM International, West Conshohocken, PA, USA.

ASTM C204 (2018), Standard test methods for fineness of hydraulic Cement by air-permeability apparatus, ASTM International, West Conshohocken, PA, USA.

EPA (2007) Method 3051A.U.S. EPA Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils, Revision 1, United States Environmental Protection Agency, Washington, DC, USA.

EPA (1994) Method 200.7, Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4.4, United States Environmental Protection Agency, Cincinnati, OH, USA.

IRAM 1654 (2015) Puzolanas y Cenizas volantes silíceas. Parte 1: Métodos de ensayos físicos (Pozzolans and siliceous fly ash. Part 1: Physical test methods), IRAM, Buenos Aires, Argentina.

Kantro, D. (1980) Influence of water-reducing admixtures on properties of cement paste-a miniature slump test. Cem. Concr. Aggr. 2[2], 95-102. https://doi.org/10.1520/CCA10190J

EN 196-5 (2011) Methods of testing cement. Part 5: Pozzolanicity test for pozzolanic cement, British Standard Institution, London, UK.

EN 450-1 (2012) Fly ash for concrete. Part 1: Definition, specification and conformity criteria, British Standard Institution, London, UK.

EN 196-1 (2016) Methods of testing cement. Part 1: Determination of strength, British Standard Institution, London, UK.

ASTM C1437 (2015) Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, USA.

Powers, T.C. (1949) The non-evaporable water content of hardened portland-cement paste. Its significance for concrete research and its method of determination, ASTM Bulletin.158, 68-76.

Bengochea, L.; Mas, G.; Maiza, P.; Bengochea, J. (1997) Mordenite occurrence in the Mendoza Province, Argentina. In: Zeolite '97. 5th International Conference on the occurrence, properties and utilization of natural zeolites, Ischia, Italy, 63-64.

ASTM C 618 (2017) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, West Conshohocken, PA, USA.

Van Reeuwijk, L.P. (1974) The thermal dehydration of natural zeolites, Mededelingen Landbouwhogeschool Wageningen, 74-79. H. Veenman & Zonen B.V., Wageningen, Netherlands.

Adriano, A.; Soriano, G.; Duque, J. (2013) Characterization of water absorption and desorption properties of natural zeolites in Ecuador. In: Fifth International Symposium on Energy, Puerto Rico Energy Center-Laccei, Puerto Rico, 1-9.

Zvereva, I.; Kremnev, R.; Sirotov, V.; Rodríguez-Iznaga, I.; Hernández, M.A.; Petranovskii, V. (2017) Thermal analysis and porosimetry of natural zeolites from Mexican and Cuban deposits. App. Solid State Chem. 1, 35-41. https://doi.org/10.18572/2619-0141-2017-1-1-35-41

Pechar, F. Rykl, D. (1987) Thermal decomposition of natural mordenite, Chem. Pap. 41[3], 351-362. https://www. chempap.org/?id=7&paper=4287

Földvári, M. (2011) Handbook of thermogravimetric system of minerals and its use in geological practice. Occasional Papers of the Geological Institute of Hungary 213, Geological Institute of Hungary, Budapest, Hungary.

Jansen, J.C.; van der Gaag, F.J.; van Bekkum, H. (1984) Identification of ZSM-type and other 5-ring containing zeolites by IR spectroscopy. Zeolites, 4[4], 369-372. https://doi.org/10.1016/0144-2449(84)90013-7

Deshpande, V.P.; Bhoskar, B.T. (2012) Ion exchange and dielectric study of mordenite, International Journal of Engineering Research & Technology, 1[8], 1-22.

Ostroumov, M.; Corona-Chávez, P.(2003) Mineralogical study of mordenite from the Sierra Madre del Sur, southwestern Mexico. Rev. Mex. Cienc. Geol. 20[2], 133-138.

Mumpton, F.A. (1999) La roca mágica: Uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Sciences of the Unites States of America. 96[7], 3463-3470. https://doi.org/10.1073/pnas.96.7.3463 PMid:10097058 PMCid:PMC34179

Tazaki, K.; Tiba, T.; Aratani, M.; Miyachi, M. (1992) Structural water in volcanic glass, Clay Clay Min. 40[1], 122-127. https://doi.org/10.1346/CCMN.1992.0400113

Martínez-Ramírez, S.; Blanco-Varela, M.T.; Ereña, I.; Gener, M. (2006) Pozzolanic reactivity of zeolitic rocks from two different Cuban deposits: Characterization of reaction products. Appl. Clay Sci. 32[1-2], 40-52. https://doi.org/10.1016/j.clay.2005.12.001

Caputo, D.; Liguori, B.; Colella, C. (2008) Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure. Cem. Concr. Comp. 30[5], 455-462. https://doi.org/10.1016/j.cemconcomp.2007.08.004

Tydlitát, V.; Zákoutsk?, J.; ?ern?, R. (2014) Early-stage hydration heat development in blended cements containing natural zeolite studied by isothermal calorimetry. Thermochimica Acta. 582, 53-58. https://doi.org/10.1016/j.tca.2014.03.003

Rahhal, V.F.; Pavlík, Z.; Tironi, A.; Castellano, C.C.; Trezza, M.A.; ?ern?, R.; Irassar, E.F. (2017) Effect of cement composition on the early hydration of blended cements with natural zeolite. J Therm Anal Calorim. 128[2], 721-733. https://doi.org/10.1007/s10973-016-6007-4

Bentz, D.P.; Ferraris, C.F.; Galler, M.A.; Hansen, A.S.; Guynn, J.M. (2012) Influence of particle size distributions on yield stress and viscosity of cement-fly ash pastes. Cem. Concr. Res. 42[2], 404-409. https://doi.org/10.1016/j.cemconres.2011.11.006

Guo, Y.; Zhang, T.; Wei, J.; Yu, Q.; Ouyang, S. (2017) Evaluating the distance between particles in fresh cement paste based on the yield stress and particle size. Constr. Build. Mater. 142, 109-116. https://doi.org/10.1016/j.matdes.2017.02.014

Locati, F.; Marfil, S.; Lescano, L.; Madsen, L.; Cravero, F.; Castillo, L.; Barbosa, S.; Maiza. P. (2017) Síntesis de zeolita Na-P en solución alcalina a partir de una toba vítrea parcialmente zeolitizada. Revista de Geología Aplicada a la Ingeniería y al Ambiente, 39, 1-7. https://www.editoresasagai.org.ar/ojs/index.php/rgaia/article/view/140

Blanc, P.; Vieillard, P.; Gailhanou, H.; Gaboreau, S.; Marty, N.; Claret, F.; Madé, B.; Giffaut, E. (2015) ThermoChimie database developments in the framework of cement/ clay interactions. Appl. Geochem. 55, 95-107. https://doi.org/10.1016/j.apgeochem.2014.12.006



How to Cite

Bonavetti, V. L., Rahhal, V. F., Locati, F., Irassar, E. F., Marfil, S., & Maiza, P. (2020). Pozzolanic activity of argentine vitreous breccia containing mordenite. Materiales De Construcción, 70(337), e208. https://doi.org/10.3989/mc.2020.04019



Research Articles

Most read articles by the same author(s)