Long-term sulfate attack on recycled aggregate concrete immersed in sodium sulfate solution for 10 years

Authors

DOI:

https://doi.org/10.3989/mc.2020.06319

Keywords:

Concrete, Transport properties, Sulphate attack, Microcracking, Thermal analysis

Abstract


The effect of recycled concrete aggregate (RCA) on concrete performance against external sulfate attack (ESA) is not yet fully known. In this paper, recycled aggregate concretes (RAC) with 0, 50, 75 and 100% of RCA contents were evaluated after 10 years of exposure immersed in 50g/l sodium sulfate solution. Sulfate ingress profiles were obtained by wet chemical analyses and FRX. Also, the mineralogy of the ingress profile was evaluated by thermogravimetric analyses. Finally, microcracking development in samples was evaluated by optical fluorescent microscopy image analysis. Although RAC showed a slight increase in sulfate ingress, due to its higher porosity (about 30% higher SO3 content near the surface for 50% or higher replacement ratio than control concrete), a dense new matrix still allows a good performance of RAC to external sulfate attack with even 100% RCA content.

Downloads

Download data is not yet available.

References

Hansen, T.C. (1986) Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945-1985. Matériaux et Constructions. 19 [111], 201-246. https://doi.org/10.1007/BF02472036

Abbas, A.; Fathifazl, G.; Isgor, O.B.; Razaqpur, G. (2006) Environmental benefits of green concrete. EIC Climate Change Conference 2006 IEEE; 10-12 May 2006. 1-8. https://doi.org/10.1109/EICCCC.2006.277204

Zega, C.J.; Di Maio, Á.A. (2007) Efecto del agregado grueso reciclado sobre las propiedades del hormigón. Bolet. Téc. IMME. 45 [2], 1-11.

Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Conc. Res. 37 [5], 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002

Kou, S.C.; Poon, C.S. (2013) Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem. Concr. Comp. 37 [1], 12-19. https://doi.org/10.1016/j.cemconcomp.2012.12.011

Poon, C.S.; Shui, Z.H.; Lam, L. (2004) Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Const. Build. Mat. 18 [6], 461-468. https://doi.org/10.1016/j.conbuildmat.2004.03.005

Gómez-Soberón, J.M.; Agulló, L.; Vázquez, E. (2002) Cualidades Físicas y Mecánicas de los Agregados Reciclados de Concreto. Aplicación en Concretos. Tecnología y construcción. XIII-157, 10-22.

Sánchez de Juan, M.; Alaejos Gutiérrez, P. (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Const. Build. Mat.. 23 [2], 872-877. https://doi.org/10.1016/j.conbuildmat.2008.04.012

Nixon, P.J. (1978) Recycled concrete as an aggregate for concrete-a review. Matériaux et Constructions. 11 [65], 371-378. https://doi.org/10.1007/BF02473878

Gómez-Soberón, J.M. (2003) Relationship between gas adsorption and the shrinkage and creep of recycled aggregate concrete. Cem. Concr. Aggeg. 2, 42-48.

Thomas, C.; Setién, J.; Polanco, J.A.; Alaejos, P.; Sánchez de Juan, M. (2013) Durability of recycled aggregate concrete. Const. Build. Mat. 40, 1054-1065. https://doi.org/10.1016/j.conbuildmat.2012.11.106

Gómez-Soberón, J.M. (2002) Porosity of recycled concrete with substitution of recycled concrete aggregate. An experimental study". Cem. Conc. Res. 32, 1301-1311. https://doi.org/10.1016/S0008-8846(02)00795-0

Gonçalves, A.; Esteves, A.; Vieira, M. (2004) Influence of recycled concrete aggregates on concrete durability, International RILEM Conference on the Use of Recycled Materials in Building and Structures, 8-11 November, Barcelona, Spain. 554-562.

Olorunsogo, F.T.; Padayachee, N. (2002) Performance of recycled aggregate concrete monitored by durability indexes. Cem. Conc. Res. 32 [2], 179-185. https://doi.org/10.1016/S0008-8846(01)00653-6

Villagrán-Zaccardi, Y.A.; Zega, C.J.; Di Maio, Á.A. (2008) Chloride Penetration and Binding in Recycled Concrete. J. Mat. Civil Eng. 20 [6], 449-455. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:6(449)

Etxeberria; M.; Vázquez, E.; Marí, A. (2006) Microstructure analysis of hardened recycled aggregate concrete. Mag. Conc. Res. 58 [10], 683-690. https://doi.org/10.1680/macr.2006.58.10.683

Otsuki, N.; Miyazato, S.; Yodsudjai, W. (2003) Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete. J. Mat. Civil Eng.. 15 [5], 443-451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)

Medina, C.; Frías, M.; Sánchez de Rojas, M.I. (2012) Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Const. Build. Mat.. 31, 112-118. https://doi.org/10.1016/j.conbuildmat.2011.12.075

Neville, A. (2004) The confused world of sulfate attack on concrete. Cem. Conc. Res. 34 [8], 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004

Menéndez-Mendez, E.; Matschei, T.; Glasser, F.P. (2013) Sulfate Attack of Concrete. In Performance of Cement-Based Materials in Aggressive Aqueous Environments, RILEM. Springer. 8-74. https://doi.org/10.1007/978-94-007-5413-3_2

Haynes, H.; O'Neill, R.; Mehta, K.P. (1996) Concrete Deterioation from Physical Attack by Salts. Concrete International. 18 , 63-68.

Scherer, G.W. (2004) Stress from crystallization of salt. Cem. Conc. Res. 34 [9], 1613-1624. https://doi.org/10.1016/j.cemconres.2003.12.034

Stark, D. (1989) Durability of Concrete in Sulfate-Rich Soils. Research and Development Bulletin RD097, Skokie, Illinois: Portland Cement Association. 14p.

Xiao, Q.H.; Li, Q.; Cao, Z.Y.; Tian, W.Y. (2019) The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack. Const. Build. Mat. 200, 344-355. https://doi.org/10.1016/j.conbuildmat.2018.12.066

Whittaker, M.; Black, L. (2015) Current knowledge of external sulfate attack. Adv. Cem. Res. 27 [9], 532-545. https://doi.org/10.1680/jadcr.14.00089

Santhanam, M.; Cohen, M.D.; Olek, J. (2003) Mechanism of sulfate attack: a fresh look. Part 2: Proposed mechanisms. Cem. Conc. Res. 33 [3], 341-346. https://doi.org/10.1016/S0008-8846(02)00958-4

Irassar, E.F.; Bonavetti, V.L.; González, M. (2003) Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature. Cem. Conc. Res. 33 [1], 31-41. https://doi.org/10.1016/S0008-8846(02)00914-6

Collepardi, M. (2003) A state-of-the-art review on delayed ettringite attack on concrete. Cem. Conc. Comp. 25 [4-5 SPEC], 401-407. https://doi.org/10.1016/S0958-9465(02)00080-X

Metha, K.P.; Monteiro, P.J.M. (2006) Concrete: Microstructure, Properties and Materials, Third Edit. McGraw-Hill, New York, (2006).

Lee, S.; Swamy, R.N.; Kim, S.; Park, Y. (2008) Durability of Mortars Made with Recycled Fine Aggregates Exposed to Sulfate Solutions, J. Mat. Civil Eng. 20 [1], 63-70. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:1(63)

Lee, S. (2009) Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack. Waste Manag. 29 [8], 2385-2391. https://doi.org/10.1016/j.wasman.2009.04.002 PMid:19467853

Boudali, S.; Kerdal, D.E.; Ayed, K.; Abdulsalam, B; Soliman, A.M. (2016) Performance of self-compacting concrete incorporating recycled concrete fines and aggregate exposed to sulphate attack. Const. Build. Mat.. 124, 705-713. https://doi.org/10.1016/j.conbuildmat.2016.06.058

Santillán, L.R.; Villagrán-Zaccardi, Y.A.; Zega, C.J. (2018) Assessment of the influence of recycled aggregate on the resistance to external sulfate attack by accelerated testing of mortar bars. Proceedings of 4th International Conference on Service Life Design for Infrastructures (SLD4), 27-30 August, Delft, Netherlands, RILEM Publications S.A.R.L., 793-802.

Li; Y.; Wang, R.; Li, S.; Zhao, Y.;Qin, Y. (2018) Resistance of recycled aggregate concrete containing low- and high-volume fly ash against the combined action of freeze-thaw cycles and sulfate attack. Const. Build. Mat. 166, 23-34. https://doi.org/10.1016/j.conbuildmat.2018.01.084

Qi, B.; Gao, J.; Chen, F.; Shen, D. (2017) Evaluation of the damage process of recycled aggregate concrete under sulfate attack and wetting-drying cycles. Const. Build. Mat. 138, 254-262. https://doi.org/10.1016/j.conbuildmat.2017.02.022

Dhir, R.K.; Limbachiya, M.C.; Leelawat, T. (1999) Suitability of Recycled Concrete Aggregate for Use in Bs 5328 Designated Mixes. Proceedings of the Institution of Civil Engineers - Structures and Buildings, August 1999. 134 [3], 257-274. https://doi.org/10.1680/istbu.1999.31568

Bulatovic, V.; Melesev, M. (2017) Evaluation of sulfate resistance of concrete with recycled and natural aggregates. Const. Build. Mat. 152, 614-631. https://doi.org/10.1016/j.conbuildmat.2017.06.161

Boudali, S.; Soliman, A.M.; Abdulsalam, B.; Kada, A. (2017) Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate. Int. Jour. of Struct. and Const. Eng. 11 [8], 1012-1016.

Somna, R.; Jaturapitakkul, C.; Made, A.M. (2012) Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete. Cem. Conc. Comp. 34 [7], 848-854. https://doi.org/10.1016/j.cemconcomp.2012.03.003

Arredondo-Rea, S.P.; Corral-Higuera, R.; Neri-Flores, M.A.; Gómez-Soberón, J.M.; Almeraya-Calderón, F.; Castorena-González, J.H.; Almaral-Sánchez, J.L. (2011) Electrochemical Corrosion and Electrical Resistivity of Reinforced Recycled Aggregate Concrete. Int. J. Electrochemical Sci. 6, 475-483. http://www.electrochemsci.org/papers/vol6/6020475.pdf.

Tangchirapat, W.; Khamklai, S.; Jaturapitakkul, C. (2012) Use of ground palm oil fuel ash to improve strength, sulfate resistance, and water permeability of concrete containing high amount of recycled concrete aggregates. Mat. Design. 41, 150-157. https://doi.org/10.1016/j.matdes.2012.04.054

Rattanachu, P.; Tangchirapat, W.; Jaturapitakkul, C. (2019) Water Permeability and Sulfate Resistance of Eco-Friendly High-Strength Concrete Composed of Ground Bagasse Ash and Recycled Concrete Aggregate. J. Mat. Civil Eng. 31 [6]. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002740

Arredondo-Rea, S.P.; Corral-Higuera, R.; Almaral-Sánchez, J.L.; Castorena-González, M.A.; Neri-Flores, M.A.; Martinez-Villafañe, A. Almeraya-Calderon, F. (2009) Efficiency of Supplementary Materials Against Steel Corrosion in Concrete with Recycled Aggregate Exposed to Sulfates. ECS Transactions. 20 [1], 499-506. https://doi.org/10.1149/1.3268417

Xie, J.; Zhao, J.; Wang, J., Wang, C.; Huang, P.; Fang, C. (2019) Sulfate resistance of recycled aggregate concrete with GGBS and fly ash-based geopolymer. Materials, 12 [8], 1247. https://doi.org/10.3390/ma12081247 PMid:31014035 PMCid:PMC6515352

Song, X.; Qiao, P.; Wen, H. (2015) Recycled aggregate concrete enhanced with polymer aluminium sulfate. Mag. Concr. Res. 67 [10], 496-502. https://doi.org/10.1680/macr.14.00119

Mendivil-Escalante, J.M.; Gómez-Soberón, J.M.; Almaral-Sánchez, J.L.; Cabrera-Covarrubias, F.G. (2017) Metamorphosis in the porosity of recycled concretes through the use of a recycled polyethylene terephthalate (PET) additive. Correlations between the porous network and concrete properties. Materials. 10 [2], 176. https://doi.org/10.3390/ma10020176 PMid:28772540 PMCid:PMC5459097

Zega, C.J.; Coelho Do Santos, G.S.; Villagrán Zaccardi, Y.A.; Di Maio, A.A. (2016) Performance of recycled concretes exposed to sulphate soil for 10 years. Construc. Build. Mat. 102 [Part 1], 714-721. https://doi.org/10.1016/j.conbuildmat.2015.11.025

IRAM 50001 (2000) Cemento. Cementos con propiedades especiales [Argentinian Standard. Cement. Cement with special properties].

UNE-EN 197 (2011). Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes.

ASTM C136-01 (2001) Standard test method for sieve analysis of fine and coarse aggregates, 5p.

ASTM C33-03 (2003) Standard specification for concrete aggregates, 11p.

ASTM C127-01 (2001) Standard test method for specific gravity and absorption of coarse aggregate, 5p.

ASTM C117-03 (2003) Standard test method for materials finer than 75-?m (No. 200) sieve in mineral aggregates by washing, 4p.

ASTM C131-03 (2003) Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine.

IRAM 1871 (2004) Hormigón. Método de ensayo para determinar la capacidad y la velocidad de succión capilar de agua del hormigón endurecido [Argentinian Standard. Concrete. Test method for the determination of the water capillary sorption capacity and rate of hardened concrete].

IRAM 1554 (1983). Hormigón. Método de determinación de la penetración de agua a presión en el hormigón endurecido [Argentinian Standard. Concrete. Test method for the determination of water penetration under pressure in hardened concrete].

BS-EN 12390-8 (2009) Testing hardened concrete. Depth of penetration of water under pressure.

ASTM C642-97 (1997) Standard test method for Density, Absorption, and Voids in Hardened Concrete, 3p.

Villagrán-Zaccardi, Y.A.; Egüez-Alava, H.; De Buysser, K; Gruyaert, E.; De Belie, N. (2017) Calibrated quantitative thermogravimetric analysis for the determination of portlandite and calcite content in hydrated cementitious systems. Mat. Struct. 50 [3], 179. https://doi.org/10.1617/s11527-017-1046-2

CIRSOC 201 (2005) Reglamento Argentino de Estructuras de Hormigón [Argentinian Standard, In Spanish].

Bonen, D.; Cohen, M.D. (1992) Magnesium sulfate attack on portland cement paste-I. Microstructural analysis. Cem. Conc. Res. 22 [1], 169-180. https://doi.org/10.1016/0008-8846(92)90147-N

Santhanam, M.; Cohen, M.D.; Olek, J. (2002) Mechanism of sulfate attack: a fresh look - Part 1: Summary of experimental results. Cem. Conc. Res. 32 [6], 915-921. https://doi.org/10.1016/S0008-8846(02)00724-X

Schmidt, T.; Lothenbach, B.; Romer, M., Neuenschwander, J.; Scrivener, K. (2009) Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem. Conc. Res. 39 [12], 1111-1121. https://doi.org/10.1016/j.cemconres.2009.08.005

Lothenbach, B.; Durdzinski, P.; De Weerdt, K. (2016) Thermogravimetric analysis, In Scrivener K, Snellings R, Lothenbach B (eds): A Practical Guide to Microstructural Analysis of Cementitious Materials, 1st edition. Boca Raton, USA: CRC Press. 2016, 177-211. https://doi.org/10.1201/b19074-6

Halle, J.C.; Stern, K.H. (1980) The effect of silica on the thermal decomposition of sodium sulphate. Corrosion Science. 20 [10], 1139-1142. https://doi.org/10.1016/0010-938X(80)90144-4

González, M.; Irassar, E.F. (1998) Effect of limestone filler on the sulfate resistance of low C3A Portland cement. Cem. Conc. Res. 28 [11], 1655-1667. https://doi.org/10.1016/S0008-8846(98)00144-6

Skalny, J.; Marchand, J.; Odler, I. (2002) Sulfate Attack on Concrete, London, UK: Spon, 2002.

Ferraris, C.F.; Stutzman, P.E.; Kenneth, S.A. (2006) Sulfate Resistance of Concrete: a new approach. R&D Serial No. 2486, Skokie, Illinois: Portland Cement Association. 2006, 93p.

Rasheeduzzafar (1992) Influence of Cement Composition on Concrete Durability, ACI Materials Journal. 89 [6], 574-586. https://doi.org/10.14359/4033

Messad, S.; Carcassès, M.; Linger, L.; Boutillon, L. (2010) Performance Approach Using Accelerated Test Method for External Sulfate Attack. Proceedings of the 3rd fib International Congress, 29 May to 2 June, Washington, USA. 1-11.

Published

2020-03-30

How to Cite

Santillán, L. R., Locati, F., Villagrán-Zaccardi, Y. A., & Zega, C. J. (2020). Long-term sulfate attack on recycled aggregate concrete immersed in sodium sulfate solution for 10 years. Materiales De Construcción, 70(337), e212. https://doi.org/10.3989/mc.2020.06319

Issue

Section

Research Articles

Most read articles by the same author(s)