Ataque por sulfatos a largo plazo sobre hormigón de árido reciclado sumergido en solución de sulfato de sodio por 10 años
DOI:
https://doi.org/10.3989/mc.2020.06319Palabras clave:
Hormigón, Ataque por sulfatos, Propiedades de transporte, Microfisuración, Análisis térmicoResumen
El efecto del árido reciclado de hormigón (AR) en el desempeño del hormigón frente al ataque externo por sulfatos (AES) no es aún del todo conocido. En este trabajo, se evaluaron hormigones con áridos reciclados (HAR) con 0, 50, 75 y 100% de AR, tras 10 años sumergidos en solución de sulfato de sodio 50g/l. Se obtuvieron perfiles de ingreso de sulfato mediante análisis químico vía húmeda y FRX. También se evaluó la mineralogía de los perfiles por termogravimetría y la microfisuración mediante microscopia óptica con fluorescencia. Aunque los HAR mostraron un leve incremento en el ingreso de sulfatos debido a su mayor porosidad (aproximadamente 30% más de SO3 en la superficie para reemplazos de 50% o mayores), una nueva matriz densa permite un aceptable desempeño del HAR frente al AES, aún con un 100% de AR.
Descargas
Citas
Hansen, T.C. (1986) Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945-1985. Matériaux et Constructions. 19 [111], 201-246. https://doi.org/10.1007/BF02472036
Abbas, A.; Fathifazl, G.; Isgor, O.B.; Razaqpur, G. (2006) Environmental benefits of green concrete. EIC Climate Change Conference 2006 IEEE; 10-12 May 2006. 1-8. https://doi.org/10.1109/EICCCC.2006.277204
Zega, C.J.; Di Maio, Á.A. (2007) Efecto del agregado grueso reciclado sobre las propiedades del hormigón. Bolet. Téc. IMME. 45 [2], 1-11.
Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Conc. Res. 37 [5], 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002
Kou, S.C.; Poon, C.S. (2013) Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem. Concr. Comp. 37 [1], 12-19. https://doi.org/10.1016/j.cemconcomp.2012.12.011
Poon, C.S.; Shui, Z.H.; Lam, L. (2004) Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Const. Build. Mat. 18 [6], 461-468. https://doi.org/10.1016/j.conbuildmat.2004.03.005
Gómez-Soberón, J.M.; Agulló, L.; Vázquez, E. (2002) Cualidades Físicas y Mecánicas de los Agregados Reciclados de Concreto. Aplicación en Concretos. Tecnología y construcción. XIII-157, 10-22.
Sánchez de Juan, M.; Alaejos Gutiérrez, P. (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Const. Build. Mat.. 23 [2], 872-877. https://doi.org/10.1016/j.conbuildmat.2008.04.012
Nixon, P.J. (1978) Recycled concrete as an aggregate for concrete-a review. Matériaux et Constructions. 11 [65], 371-378. https://doi.org/10.1007/BF02473878
Gómez-Soberón, J.M. (2003) Relationship between gas adsorption and the shrinkage and creep of recycled aggregate concrete. Cem. Concr. Aggeg. 2, 42-48.
Thomas, C.; Setién, J.; Polanco, J.A.; Alaejos, P.; Sánchez de Juan, M. (2013) Durability of recycled aggregate concrete. Const. Build. Mat. 40, 1054-1065. https://doi.org/10.1016/j.conbuildmat.2012.11.106
Gómez-Soberón, J.M. (2002) Porosity of recycled concrete with substitution of recycled concrete aggregate. An experimental study". Cem. Conc. Res. 32, 1301-1311. https://doi.org/10.1016/S0008-8846(02)00795-0
Gonçalves, A.; Esteves, A.; Vieira, M. (2004) Influence of recycled concrete aggregates on concrete durability, International RILEM Conference on the Use of Recycled Materials in Building and Structures, 8-11 November, Barcelona, Spain. 554-562.
Olorunsogo, F.T.; Padayachee, N. (2002) Performance of recycled aggregate concrete monitored by durability indexes. Cem. Conc. Res. 32 [2], 179-185. https://doi.org/10.1016/S0008-8846(01)00653-6
Villagrán-Zaccardi, Y.A.; Zega, C.J.; Di Maio, Á.A. (2008) Chloride Penetration and Binding in Recycled Concrete. J. Mat. Civil Eng. 20 [6], 449-455. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:6(449)
Etxeberria; M.; Vázquez, E.; Marí, A. (2006) Microstructure analysis of hardened recycled aggregate concrete. Mag. Conc. Res. 58 [10], 683-690. https://doi.org/10.1680/macr.2006.58.10.683
Otsuki, N.; Miyazato, S.; Yodsudjai, W. (2003) Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete. J. Mat. Civil Eng.. 15 [5], 443-451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)
Medina, C.; Frías, M.; Sánchez de Rojas, M.I. (2012) Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Const. Build. Mat.. 31, 112-118. https://doi.org/10.1016/j.conbuildmat.2011.12.075
Neville, A. (2004) The confused world of sulfate attack on concrete. Cem. Conc. Res. 34 [8], 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004
Menéndez-Mendez, E.; Matschei, T.; Glasser, F.P. (2013) Sulfate Attack of Concrete. In Performance of Cement-Based Materials in Aggressive Aqueous Environments, RILEM. Springer. 8-74. https://doi.org/10.1007/978-94-007-5413-3_2
Haynes, H.; O'Neill, R.; Mehta, K.P. (1996) Concrete Deterioation from Physical Attack by Salts. Concrete International. 18 , 63-68.
Scherer, G.W. (2004) Stress from crystallization of salt. Cem. Conc. Res. 34 [9], 1613-1624. https://doi.org/10.1016/j.cemconres.2003.12.034
Stark, D. (1989) Durability of Concrete in Sulfate-Rich Soils. Research and Development Bulletin RD097, Skokie, Illinois: Portland Cement Association. 14p.
Xiao, Q.H.; Li, Q.; Cao, Z.Y.; Tian, W.Y. (2019) The deterioration law of recycled concrete under the combined effects of freeze-thaw and sulfate attack. Const. Build. Mat. 200, 344-355. https://doi.org/10.1016/j.conbuildmat.2018.12.066
Whittaker, M.; Black, L. (2015) Current knowledge of external sulfate attack. Adv. Cem. Res. 27 [9], 532-545. https://doi.org/10.1680/jadcr.14.00089
Santhanam, M.; Cohen, M.D.; Olek, J. (2003) Mechanism of sulfate attack: a fresh look. Part 2: Proposed mechanisms. Cem. Conc. Res. 33 [3], 341-346. https://doi.org/10.1016/S0008-8846(02)00958-4
Irassar, E.F.; Bonavetti, V.L.; González, M. (2003) Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature. Cem. Conc. Res. 33 [1], 31-41. https://doi.org/10.1016/S0008-8846(02)00914-6
Collepardi, M. (2003) A state-of-the-art review on delayed ettringite attack on concrete. Cem. Conc. Comp. 25 [4-5 SPEC], 401-407. https://doi.org/10.1016/S0958-9465(02)00080-X
Metha, K.P.; Monteiro, P.J.M. (2006) Concrete: Microstructure, Properties and Materials, Third Edit. McGraw-Hill, New York, (2006).
Lee, S.; Swamy, R.N.; Kim, S.; Park, Y. (2008) Durability of Mortars Made with Recycled Fine Aggregates Exposed to Sulfate Solutions, J. Mat. Civil Eng. 20 [1], 63-70. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:1(63)
Lee, S. (2009) Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack. Waste Manag. 29 [8], 2385-2391. https://doi.org/10.1016/j.wasman.2009.04.002 PMid:19467853
Boudali, S.; Kerdal, D.E.; Ayed, K.; Abdulsalam, B; Soliman, A.M. (2016) Performance of self-compacting concrete incorporating recycled concrete fines and aggregate exposed to sulphate attack. Const. Build. Mat.. 124, 705-713. https://doi.org/10.1016/j.conbuildmat.2016.06.058
Santillán, L.R.; Villagrán-Zaccardi, Y.A.; Zega, C.J. (2018) Assessment of the influence of recycled aggregate on the resistance to external sulfate attack by accelerated testing of mortar bars. Proceedings of 4th International Conference on Service Life Design for Infrastructures (SLD4), 27-30 August, Delft, Netherlands, RILEM Publications S.A.R.L., 793-802.
Li; Y.; Wang, R.; Li, S.; Zhao, Y.;Qin, Y. (2018) Resistance of recycled aggregate concrete containing low- and high-volume fly ash against the combined action of freeze-thaw cycles and sulfate attack. Const. Build. Mat. 166, 23-34. https://doi.org/10.1016/j.conbuildmat.2018.01.084
Qi, B.; Gao, J.; Chen, F.; Shen, D. (2017) Evaluation of the damage process of recycled aggregate concrete under sulfate attack and wetting-drying cycles. Const. Build. Mat. 138, 254-262. https://doi.org/10.1016/j.conbuildmat.2017.02.022
Dhir, R.K.; Limbachiya, M.C.; Leelawat, T. (1999) Suitability of Recycled Concrete Aggregate for Use in Bs 5328 Designated Mixes. Proceedings of the Institution of Civil Engineers - Structures and Buildings, August 1999. 134 [3], 257-274. https://doi.org/10.1680/istbu.1999.31568
Bulatovic, V.; Melesev, M. (2017) Evaluation of sulfate resistance of concrete with recycled and natural aggregates. Const. Build. Mat. 152, 614-631. https://doi.org/10.1016/j.conbuildmat.2017.06.161
Boudali, S.; Soliman, A.M.; Abdulsalam, B.; Kada, A. (2017) Microstructural Properties of the Interfacial Transition Zone and Strength Development of Concrete Incorporating Recycled Concrete Aggregate. Int. Jour. of Struct. and Const. Eng. 11 [8], 1012-1016.
Somna, R.; Jaturapitakkul, C.; Made, A.M. (2012) Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete. Cem. Conc. Comp. 34 [7], 848-854. https://doi.org/10.1016/j.cemconcomp.2012.03.003
Arredondo-Rea, S.P.; Corral-Higuera, R.; Neri-Flores, M.A.; Gómez-Soberón, J.M.; Almeraya-Calderón, F.; Castorena-González, J.H.; Almaral-Sánchez, J.L. (2011) Electrochemical Corrosion and Electrical Resistivity of Reinforced Recycled Aggregate Concrete. Int. J. Electrochemical Sci. 6, 475-483. http://www.electrochemsci.org/papers/vol6/6020475.pdf.
Tangchirapat, W.; Khamklai, S.; Jaturapitakkul, C. (2012) Use of ground palm oil fuel ash to improve strength, sulfate resistance, and water permeability of concrete containing high amount of recycled concrete aggregates. Mat. Design. 41, 150-157. https://doi.org/10.1016/j.matdes.2012.04.054
Rattanachu, P.; Tangchirapat, W.; Jaturapitakkul, C. (2019) Water Permeability and Sulfate Resistance of Eco-Friendly High-Strength Concrete Composed of Ground Bagasse Ash and Recycled Concrete Aggregate. J. Mat. Civil Eng. 31 [6]. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002740
Arredondo-Rea, S.P.; Corral-Higuera, R.; Almaral-Sánchez, J.L.; Castorena-González, M.A.; Neri-Flores, M.A.; Martinez-Villafañe, A. Almeraya-Calderon, F. (2009) Efficiency of Supplementary Materials Against Steel Corrosion in Concrete with Recycled Aggregate Exposed to Sulfates. ECS Transactions. 20 [1], 499-506. https://doi.org/10.1149/1.3268417
Xie, J.; Zhao, J.; Wang, J., Wang, C.; Huang, P.; Fang, C. (2019) Sulfate resistance of recycled aggregate concrete with GGBS and fly ash-based geopolymer. Materials, 12 [8], 1247. https://doi.org/10.3390/ma12081247 PMid:31014035 PMCid:PMC6515352
Song, X.; Qiao, P.; Wen, H. (2015) Recycled aggregate concrete enhanced with polymer aluminium sulfate. Mag. Concr. Res. 67 [10], 496-502. https://doi.org/10.1680/macr.14.00119
Mendivil-Escalante, J.M.; Gómez-Soberón, J.M.; Almaral-Sánchez, J.L.; Cabrera-Covarrubias, F.G. (2017) Metamorphosis in the porosity of recycled concretes through the use of a recycled polyethylene terephthalate (PET) additive. Correlations between the porous network and concrete properties. Materials. 10 [2], 176. https://doi.org/10.3390/ma10020176 PMid:28772540 PMCid:PMC5459097
Zega, C.J.; Coelho Do Santos, G.S.; Villagrán Zaccardi, Y.A.; Di Maio, A.A. (2016) Performance of recycled concretes exposed to sulphate soil for 10 years. Construc. Build. Mat. 102 [Part 1], 714-721. https://doi.org/10.1016/j.conbuildmat.2015.11.025
IRAM 50001 (2000) Cemento. Cementos con propiedades especiales [Argentinian Standard. Cement. Cement with special properties].
UNE-EN 197 (2011). Cemento. Parte 1: Composición, especificaciones y criterios de conformidad de los cementos comunes.
ASTM C136-01 (2001) Standard test method for sieve analysis of fine and coarse aggregates, 5p.
ASTM C33-03 (2003) Standard specification for concrete aggregates, 11p.
ASTM C127-01 (2001) Standard test method for specific gravity and absorption of coarse aggregate, 5p.
ASTM C117-03 (2003) Standard test method for materials finer than 75-?m (No. 200) sieve in mineral aggregates by washing, 4p.
ASTM C131-03 (2003) Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine.
IRAM 1871 (2004) Hormigón. Método de ensayo para determinar la capacidad y la velocidad de succión capilar de agua del hormigón endurecido [Argentinian Standard. Concrete. Test method for the determination of the water capillary sorption capacity and rate of hardened concrete].
IRAM 1554 (1983). Hormigón. Método de determinación de la penetración de agua a presión en el hormigón endurecido [Argentinian Standard. Concrete. Test method for the determination of water penetration under pressure in hardened concrete].
BS-EN 12390-8 (2009) Testing hardened concrete. Depth of penetration of water under pressure.
ASTM C642-97 (1997) Standard test method for Density, Absorption, and Voids in Hardened Concrete, 3p.
Villagrán-Zaccardi, Y.A.; Egüez-Alava, H.; De Buysser, K; Gruyaert, E.; De Belie, N. (2017) Calibrated quantitative thermogravimetric analysis for the determination of portlandite and calcite content in hydrated cementitious systems. Mat. Struct. 50 [3], 179. https://doi.org/10.1617/s11527-017-1046-2
CIRSOC 201 (2005) Reglamento Argentino de Estructuras de Hormigón [Argentinian Standard, In Spanish].
Bonen, D.; Cohen, M.D. (1992) Magnesium sulfate attack on portland cement paste-I. Microstructural analysis. Cem. Conc. Res. 22 [1], 169-180. https://doi.org/10.1016/0008-8846(92)90147-N
Santhanam, M.; Cohen, M.D.; Olek, J. (2002) Mechanism of sulfate attack: a fresh look - Part 1: Summary of experimental results. Cem. Conc. Res. 32 [6], 915-921. https://doi.org/10.1016/S0008-8846(02)00724-X
Schmidt, T.; Lothenbach, B.; Romer, M., Neuenschwander, J.; Scrivener, K. (2009) Physical and microstructural aspects of sulfate attack on ordinary and limestone blended Portland cements. Cem. Conc. Res. 39 [12], 1111-1121. https://doi.org/10.1016/j.cemconres.2009.08.005
Lothenbach, B.; Durdzinski, P.; De Weerdt, K. (2016) Thermogravimetric analysis, In Scrivener K, Snellings R, Lothenbach B (eds): A Practical Guide to Microstructural Analysis of Cementitious Materials, 1st edition. Boca Raton, USA: CRC Press. 2016, 177-211. https://doi.org/10.1201/b19074-6
Halle, J.C.; Stern, K.H. (1980) The effect of silica on the thermal decomposition of sodium sulphate. Corrosion Science. 20 [10], 1139-1142. https://doi.org/10.1016/0010-938X(80)90144-4
González, M.; Irassar, E.F. (1998) Effect of limestone filler on the sulfate resistance of low C3A Portland cement. Cem. Conc. Res. 28 [11], 1655-1667. https://doi.org/10.1016/S0008-8846(98)00144-6
Skalny, J.; Marchand, J.; Odler, I. (2002) Sulfate Attack on Concrete, London, UK: Spon, 2002.
Ferraris, C.F.; Stutzman, P.E.; Kenneth, S.A. (2006) Sulfate Resistance of Concrete: a new approach. R&D Serial No. 2486, Skokie, Illinois: Portland Cement Association. 2006, 93p.
Rasheeduzzafar (1992) Influence of Cement Composition on Concrete Durability, ACI Materials Journal. 89 [6], 574-586. https://doi.org/10.14359/4033
Messad, S.; Carcassès, M.; Linger, L.; Boutillon, L. (2010) Performance Approach Using Accelerated Test Method for External Sulfate Attack. Proceedings of the 3rd fib International Congress, 29 May to 2 June, Washington, USA. 1-11.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.