Alkali activation of recycled ceramic aggregates from construction and demolition wastes
DOI:
https://doi.org/10.3989/mc.2020.13619Keywords:
Ceramic, Alkali-activated cement, Waste treatment, Mechanical properties, Physical propertiesAbstract
Environmental concerns are becoming increasingly more significant worldwide, thus creating the urgent need for new sustainable alternatives in the industrial sector. The present study assesses the fundamental properties of ceramic residue (CR) originated by demolition operations, specifically, the floor and wall tiles and sanitaryware furniture, for further incorporation in the construction sector, namely in alkali-activated binders, mixed with other better-known precursors - fly ash (FA) and ladle furnace slag (LFS). Different CR/FA and CR/LFS weight ratios were considered and analyzed by mechanical behavior and microstructural analysis, which included uniaxial compression strength (UCS) tests, Scanning Electron Microscopy (SEM), X-ray Energy Dispersive Analyser (EDX), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Results obtained showed that the combination of CR and FA or LFS, activated with sodium silicate, produced UCS values higher than 20 MPa and 59 MPa, respectively, after 90 days curing.
Downloads
References
Hwang, C.-L.; Damtie Yehualaw, M.; Vo, D.-H.; Huynh, T.-P. (2019) Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Constr. Build. Mater. 218, 519-529. https://doi.org/10.1016/j.conbuildmat.2019.05.143
Eurostat. (2018) Waste statistics - Statistics Explained.
Cerame-Unie; Ceramic industry | Cerame-Unie - The European Ceramic Industry Association.
Khan, M.S.; Sohail, M.; Khattak, N.S.; Sayed, M. (2016) Industrial ceramic waste in Pakistan, valuable material for possible applications. J. Clean. Prod. 139, 1520-1528. https://doi.org/10.1016/j.jclepro.2016.08.131
Chen, H.-J.; Yen, T.; Chen, K.-H. (2003) Use of building rubbles as recycled aggregates. Cem. Concr. Res. 33 [1], 125-132. https://doi.org/10.1016/S0008-8846(02)00938-9
Jindal, A.; Ransinchung, R.N.G.D. (2018) Behavioural study of pavement quality concrete containing construction, industrial and agricultural wastes. Int. J. Pavement Res. Technol. 11 [5], 488-501. https://doi.org/10.1016/j.ijprt.2018.03.007
Cristelo, N.; Fernández-Jiménez, A.; Miranda, T.; Palomo, Á. (2017) Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. J. Clean. Prod. 162, 1200-1209. https://doi.org/10.1016/j.jclepro.2017.06.151
Gavali, H.R.; Bras, A.; Faria, P.; Ralegaonkar, R. V. (2019) Development of sustainable alkali-activated bricks using industrial wastes. Constr. Build. Mater. 215, 180-191. https://doi.org/10.1016/j.conbuildmat.2019.04.152
Amin, S.K.; El-Sherbiny, S.A.; El-Magd, A.A.M.A.; Belal, A.; Abadir, M.F. (2017) Fabrication of geopolymer bricks using ceramic dust waste. Constr. Build. Mater. 157, 610-620. https://doi.org/10.1016/j.conbuildmat.2017.09.052
Murillo, L.M.; Delvasto, S.; Gordillo, M. (2017) A study of a hybrid binder based on alkali-activated ceramic tile wastes and portland cement. In Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites. Elsevier Inc., pp. 291-311. https://doi.org/10.1016/B978-0-08-102001-2.00013-9
Villaquirán-Caicedo, M.A.; de Gutiérrez, R.M. (2018) Synthesis of ceramic materials from ecofriendly geopolymer precursors. Mater. Lett. 230, 300-304. https://doi.org/10.1016/j.matlet.2018.07.128
Azevedo, A.R.G.; Vieira, C.M.F.; Ferreira, W.M.; Faria, K.C.P.; Pedroti, L.G.; Mendes, B.C. (2020) Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. J. Build. Eng. 29, 101156. https://doi.org/10.1016/j.jobe.2019.101156
Sun, Z.; Cui, H.; An, H.; Tao, D.; Xu, Y.; Zhai, J.; Li, Q. (2013) Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Constr. Build. Mater. 49, 281-287. https://doi.org/10.1016/j.conbuildmat.2013.08.063
Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Asaad, M.A.; Tahir, M.M.; Mirza, J. (2019) Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash. Constr. Build. Mater. 214, 355-368. https://doi.org/10.1016/j.conbuildmat.2019.04.154
Reig, L.; Sanz, M.A.; Borrachero, M.V.; Monzó, J.; Soriano, L.; Payá, J. (2017) Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceram. Int. 43 [16], 13622-13634. https://doi.org/10.1016/j.ceramint.2017.07.072
Rakhimova, N.R.; Rakhimov, R.Z. (2015) Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste. Mater. Des. 85, 324-331. https://doi.org/10.1016/j.matdes.2015.06.182
Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Mirza, J.; Tahir, M.M. (2019) Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS. Constr. Build. Mater. 210, 78-92. https://doi.org/10.1016/j.conbuildmat.2019.03.194
Huseien, G.F.; Sam, A.R.M.; Mirza, J.; Tahir, M.M.; Asaad, M.A.; Ismail, M.; Shah, K.W. (2018) Waste ceramic powder incorporated alkali activated mortars exposed to elevated Temperatures: Performance evaluation. Constr. Build. Mater. 187, 307-317. https://doi.org/10.1016/j.conbuildmat.2018.07.226
Cristelo, N.; Tavares, P.; Lucas, E.; Miranda, T.; Oliveira, D. (2016) Quantitative and qualitative assessment of the amorphous phase of a Class F fly ash dissolved during alkali activation reactions - Effect of mechanical activation, solution concentration and temperature. Compos. Part B Eng. 103, 1-14. https://doi.org/10.1016/j.compositesb.2016.08.001
CCP14 Homepage - Tutorials and Examples - Powder Cell for Windows, Structure Visualisation/Manipulation, Powder Pattern Calculation and Profile Fitting by Werner Kraus and Gert Nolze.
Le Bail, A. (1995) Modelling the silica glass structure by the Rietveld method. J. Non. Cryst. Solids. 183, 39-42. https://doi.org/10.1016/0022-3093(94)00664-4
Cristelo, N.; Coelho, J.; Miranda, T.; Palomo, Á.; Fernández-Jiménez, A. (2019) Alkali activated composites - An innovative concept using iron and steel slag as both precursor and aggregate. Cem. Concr. Compos. 103, 11-21. https://doi.org/10.1016/j.cemconcomp.2019.04.024
Ruiz-Santaquiteria, C.; Fernández-Jiménez, A.; Palomo, Á. (2016) Alternative prime materials for developing new cements: Alkaline activation of alkali aluminosilicate glasses. Ceram. Int. 42 [8], 9333-9340. https://doi.org/10.1016/j.ceramint.2016.03.111
Fernández-Jiménez, A.; Monzó, M.; Vicent, M.; Barba, A.; Palomo, Á. (2008) Alkaline activation of metakaolin-fly ash mixtures: Obtain of Zeoceramics and Zeocements. Microporous Mesoporous Mater. 108 [1-3], 41-49. https://doi.org/10.1016/j.micromeso.2007.03.024
Garcia-Lodeiro, I.; Fernandez-Jimenez, A.; Palomo, Á. (2013) Hydration kinetics in hybrid binders: Early reaction stages. Cem. Concr. Compos. 39, 82-92. https://doi.org/10.1016/j.cemconcomp.2013.03.025
Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. (2011) A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31 [12], 2043-2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036
Schneider, H.; Schreuer, J.; Hildmann, B. (2008) Structure and properties of mullite-A review. J. Eur. Ceram. Soc. 28 [2], 329-344. https://doi.org/10.1016/j.jeurceramsoc.2007.03.017
Rivera, J.F.; Cristelo, N.; Fernández-Jiménez, A.; Mejía de Gutiérrez, R. (2019) Synthesis of alkaline cements based on fly ash and metallurgic slag: Optimisation of the SiO2 /Al2O3 and Na2O/SiO2 molar ratios using the response surface methodology. Constr. Build. Mater. 213, 424-433. https://doi.org/10.1016/j.conbuildmat.2019.04.097
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.