Empirical relationships between compressive and flexural strength of concrete containing recycled asphalt material for pavement applications using different specimen configurations





Concrete, Reclaimed Asphalt Pavement (RAP), Flexural strength, Compressive strength, Semicircular beam


The flexural strength of pavement concrete is generally deduced by testing beams or by applying empirical equations. In this investigation, concrete mixtures were manufactured, incorporating 0, 20, 50 and 100% Reclaimed Asphalt Pavement (RAP), by weight, as a replacement for natural aggregates. The compressive strength was measured using cubic specimens and the flexural strength was measured for three types of specimens; beam, semicircular (SCB) and modified beam. This study proposes logarithmic and power equations that allow the estimation of the flexural strength of a concrete mix that incorporates RAP as a function of its compressive strength. Linear or power models are proposed to predict beam flexural strength from SCB specimens and a logarithmic model for modified beam specimens. Statistical analyses show that the proposed prediction models can be considered sufficiently accurate and their use is justified.


Download data is not yet available.


ICPA - Instituto del Cemento Portland Argentino. (2014) Manual de diseño y construcción de pavimentos de hormigón, ISBN 978-950-677-003-7, Buenos Aires, Argentina, (2014).

NRMCA - National Ready Mixed Concrete Association. (2000) CIP 16- Flexural Strength Concrete. Concrete in Practice, https://www.nrmca.org/wp-content/uploads/2020/04/16pr.pdf.

Yusuf, I.T.; Jimoh, Y.A.; Salami, W.A. (2016) An appropriate relationship between flexural strength and compressive strength of palm kernel shell concrete. Alexandria Eng. J. 55 [2], 1553-1562. https://doi.org/10.1016/j.aej.2016.04.008

Ahmed, M.; El Hadi, K.M.; Hasan, M.A.; Mallick, J.; Ahmed, A. (2014) Evaluating the co-relationship between concrete flexural tensile strength and compressive strength. Int. J. Struct. Eng. 5 [2], 115-131. https://doi.org/10.1504/IJSTRUCTE.2014.060902

Xiao, J-Zh.; Li, J-B.; Zhang, C. (2006) On relationships between the mechanical properties of recycled aggregate concrete: An overview. Mater. Struct. 39, 655-664. https://doi.org/10.1617/s11527-006-9093-0

Ismeik, M. (2009) Effect of mineral admixtures on mechanical properties of high strength concrete made with locally available materials. Jordan. J. Civ. Eng. 3 [1], 78-90. https://www.iiste.org/Journals/index.php/JJCE/article/view/17874/18251.

Ahmed, M.; Dad Khan, M.K.; Wamiq, M. (2008) Effect of concrete cracking on the lateral response of RCC buildings. Asian J. Civ. Eng. (Building Housing). 9 [1], 25-34. https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=108211.

Uchechukwu, A.; Kabir, N. (2019) Flexural strength and compressive strength relations of spent foundry sand concrete. ACI Mater. J. 116 [6], 205-211. https://doi.org/10.14359/51718055

Bhanja, S.; Sengupta, B. (2005) Influence of silica fume on the tensile strength of concrete. Cem. Concr. Res. 35 [4], 743-747. https://doi.org/10.1016/j.cemconres.2004.05.024

Chhorn, C.; Hong, S.J.; Lee, S.W. (2018) Relationship between compressive and tensile strengths of roller-compacted concrete. J. Traffic Transp. Eng. 5 [3], 215-223. https://doi.org/10.1016/j.jtte.2017.09.002

Pacheco, J.N.; de Brito, J.; Chastre, C.; Evangelista, L. (2019) Probabilistic conversion of the compressive strength of cubes to cylinders of natural and recycled aggregate concrete specimens. Materials. 12 [2], 280. https://doi.org/10.3390/ma12020280 PMid:30654502 PMCid:PMC6356749

Dirección de Vialidad. (2020) Red Vial Nacional-Dimensionamiento y Características. Ministerio de Obras Públicas. http://www.vialidad.cl/areasdevialidad/gestionvial/Documents/RedVialNacional2019.pdf

Brand, A.S.; Roesler, J.R. (2015) Ternary concrete with fractionated reclaimed asphalt pavement. ACI Mater. J. 112 [1], 155-164. https://doi.org/10.14359/51687176

Copeland, A. (2011) Reclaimed asphalt pavement in asphalt mixtures: state of the practice. Rep No FHWA-HRT-11-021, Federal Highway Administration (FHWA), McLean, Virginia. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/11021/11021.pdf

Shi, X.; Mukhopadhyay, A.; Liu, K-W. (2017) Mix design formulation and evaluation of Portland cement concrete paving mixtures containing reclaimed asphalt pavement. Constr. Build. Mater. 152, 756-768. https://doi.org/10.1016/j.conbuildmat.2017.06.174

MOP - DGOP. (2019) Manual de carreteras de Chile. Vol. 5. Santiago de Chile, Ministerio de Obras Públicas de Chile, 2019.

Huang, B.; Shu, X.; Li, G. (2005) Laboratory investigation of Portland cement concrete containing recycled asphalt pavements. Cem. Concr. Res. 35 [10], 2008-2013. https://doi.org/10.1016/j.cemconres.2005.05.002

Singh, S.; Ransinchung, G.D.; Kumar, P. (2017) An economical processing technique to improve RAP inclusive concrete properties. Constr. Build. Mater. 148, 734-747. https://doi.org/10.1016/j.conbuildmat.2017.05.030

Berry, M.; Stephens, J.; Bermel, B.; Hagel, A.; Schroeder, D. (2013) Feasibility of reclaimed asphalt pavement as aggregate in Portland cement concrete pavements. FHWA/MT-13-009/8207. https://rosap.ntl.bts.gov/view/dot/24948.

Brand, A.S.; Amirkhanian, A.N.; Roesler, J.R. (2014) Flexural capacity of full-depth and two-lift concrete slabs with recycled aggregates. Transp. Res Rec. 2456, 64-72. https://doi.org/10.3141/2456-07

Hossiney, N.; Tia, M.; Bergin, M.J. (2010) Concrete containing RAP for use in concrete pavement. Int. J. Pavem. Res. Technol. 3 [5], 251-258. http://www.ijprt.org.tw/files/sample/V3N5%284%29.pdf.

Erdem, S.; Blankson, M.A. (2014) Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate. J. Hazard. Mater. 264, 403-410. https://doi.org/10.1016/j.jhazmat.2013.11.040 PMid:24316812

Ben Saïd, S.E.E.; El Euch Khay, S.; Achour, T.; Loulizi, A. (2017) Modelling of the adhesion between reclaimed asphalt pavement aggregates and hydrated cement paste. Constr. Build. Mater. 152, 839-846. https://doi.org/10.1016/j.conbuildmat.2017.07.078

Getahun, M.A.; Shitote, S.M.; Gariy, Z.C.A. (2018) Experimental investigation on engineering properties of concrete incorporating reclaimed asphalt pavement and rice husk ash. Buildings. 8 [9], 115. https://doi.org/10.3390/buildings8090115

Chyne, J.M.; Sepuri, H.K.; Thejas, H.K. (2019) A review on recycled asphalt pavement in cement concrete. Int. J. Latest Eng. Res. Appl. 4 [2], 9-18. http://www.ijlera.com/papers/v4-i2/2.201902010.pdf.

Singh, S.; Ransinchung, G.D.R.N.; Kumar, P. (2019) Feasibility study of RAP aggregates in cement concrete pavements. Road Mater. Pavem. Des. 20 [1], 151-170. https://doi.org/10.1080/14680629.2017.1380071

Al-Mufti, R.L.; Fried, A.N. (2017) Improving the strength properties of recycled asphalt aggregate concrete. Constr. Build. Mater. 149, 45-52. https://doi.org/10.1016/j.conbuildmat.2017.05.056

Singh, S.; Ransinchung, G.D.R.N. (2020) Laboratory and field evaluation of RAP for cement concrete pavements. J. Transp. Eng. 146 [2], 1-11. https://doi.org/10.1061/JPEODX.0000162

Shi, X.; Mukhopadhyay, A.; Zollinger, D.; Huang, K. (2021) Performance evaluation of jointed plain concrete pavement made with portland cement concrete containing reclaimed asphalt pavement. Road Mater. Pavem. Des. 22 [1], 59-81. https://doi.org/10.1080/14680629.2019.1616604

NCh1498 (2012) Concrete and mortar - Mixing water - Classification and requirements. Chilean Standard.

NCh170 (1985) Concrete - General requirement. Chilean standard.

Ministry of Housing and Urbanism. (2018) Código de normas y especificaciones técnicas de obras de pavimentación, Editora e imprenta MAVAL S.P.A., Santiago de Chile, 1-340 p, (2018).

NCh1017 (2009) Concrete-Making in the field and curing specimens for compression, flexural and spitting tensile tests. Chilean Standard.

NCh 1037 (2009) Concrete - Test for compressive strength of molded cubes and cylinders. Chilean Standard.

NCh1038 (2009) Concrete - Test for flexural tensile strength. Chilean Standard.

EN 12697-44 (2011) Bituminous mixtures - Test methods - Part 44: Crack propagation by semi-circular bending test. Spanish standard.

Al-Mufti, R.L.; Fried, A.N. (2017) Improving the strength properties of recycled asphalt aggregate concrete. Constr. Build. Mater. 149, 45-52. https://doi.org/10.1016/j.conbuildmat.2017.05.056

El Euch Ben Said, S.; El Euch Khay, S.; Loulizi, A. (2018) Experimental investigation of PCC incorporating RAP. Int. J. Concr. Struct. Mater. 12, 8. https://doi.org/10.1186/s40069-018-0227-x

Abraham, S.M.; Ransinchung, G.D.R.N. (2018) Influence of RAP aggregates on strength, durability and porosity of cement mortar. Constr. Build. Mater. 189, 1105-1112. https://doi.org/10.1016/j.conbuildmat.2018.09.069

Ardiansyah, A.; Mardhia, M.M.; Handayaningsih, S. (2018) Analogy-based model for software project effort estimation. Int. J. Adv. Intell. Informatics. 4 [3], 251-260. https://doi.org/10.26555/ijain.v4i3.266



How to Cite

Marín-Uribe, C. ., & Navarro-Gaete, R. . (2021). Empirical relationships between compressive and flexural strength of concrete containing recycled asphalt material for pavement applications using different specimen configurations. Materiales De Construcción, 71(342), e249. https://doi.org/10.3989/mc.2021.11520



Research Articles