Relaciones empíricas entre la resistencia a compresión y a flexión de hormigones para pavimentos, fabricados con material asfáltico recuperado, empleando distintas configuraciones de probeta

Autores/as

DOI:

https://doi.org/10.3989/mc.2021.11520

Palabras clave:

Hormigón, Material asfáltico recuperado (RAP), Resistencia a la flexión, Resistencia a la compresión, Viga semicircular

Resumen


La resistencia a la flexión de un concreto para pavimentos generalmente se estima ensayando vigas o aplicando ecuaciones empíricas. En esta investigación se fabricaron mezclas de concreto incorporando 0, 20, 50 y 100% de material asfáltico recuperado (RAP) como reemplazo por peso de los agregados naturales. Se midieron las resistencias a la compresión de probetas cúbicas y a la flexión para tres tipos de probetas; viga, semicircular (SCB) y viga modificada. Este estudio propone ecuaciones logarítmica y potencial para estimar la resistencia a la flexión de un concreto que incorpora RAP en función de su resistencia a la compresión. Para predecir la resistencia a la flexión de viga a partir de probetas SCB se propone el modelo lineal o potencial y para probetas de viga modificada el modelo logarítmico. Los análisis estadísticos muestran que los modelos de predicción propuestos pueden considerarse lo suficientemente precisos y su uso está justificado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ICPA - Instituto del Cemento Portland Argentino. (2014) Manual de diseño y construcción de pavimentos de hormigón, ISBN 978-950-677-003-7, Buenos Aires, Argentina, (2014).

NRMCA - National Ready Mixed Concrete Association. (2000) CIP 16- Flexural Strength Concrete. Concrete in Practice, https://www.nrmca.org/wp-content/uploads/2020/04/16pr.pdf.

Yusuf, I.T.; Jimoh, Y.A.; Salami, W.A. (2016) An appropriate relationship between flexural strength and compressive strength of palm kernel shell concrete. Alexandria Eng. J. 55 [2], 1553-1562. https://doi.org/10.1016/j.aej.2016.04.008

Ahmed, M.; El Hadi, K.M.; Hasan, M.A.; Mallick, J.; Ahmed, A. (2014) Evaluating the co-relationship between concrete flexural tensile strength and compressive strength. Int. J. Struct. Eng. 5 [2], 115-131. https://doi.org/10.1504/IJSTRUCTE.2014.060902

Xiao, J-Zh.; Li, J-B.; Zhang, C. (2006) On relationships between the mechanical properties of recycled aggregate concrete: An overview. Mater. Struct. 39, 655-664. https://doi.org/10.1617/s11527-006-9093-0

Ismeik, M. (2009) Effect of mineral admixtures on mechanical properties of high strength concrete made with locally available materials. Jordan. J. Civ. Eng. 3 [1], 78-90. https://www.iiste.org/Journals/index.php/JJCE/article/view/17874/18251.

Ahmed, M.; Dad Khan, M.K.; Wamiq, M. (2008) Effect of concrete cracking on the lateral response of RCC buildings. Asian J. Civ. Eng. (Building Housing). 9 [1], 25-34. https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=108211.

Uchechukwu, A.; Kabir, N. (2019) Flexural strength and compressive strength relations of spent foundry sand concrete. ACI Mater. J. 116 [6], 205-211. https://doi.org/10.14359/51718055

Bhanja, S.; Sengupta, B. (2005) Influence of silica fume on the tensile strength of concrete. Cem. Concr. Res. 35 [4], 743-747. https://doi.org/10.1016/j.cemconres.2004.05.024

Chhorn, C.; Hong, S.J.; Lee, S.W. (2018) Relationship between compressive and tensile strengths of roller-compacted concrete. J. Traffic Transp. Eng. 5 [3], 215-223. https://doi.org/10.1016/j.jtte.2017.09.002

Pacheco, J.N.; de Brito, J.; Chastre, C.; Evangelista, L. (2019) Probabilistic conversion of the compressive strength of cubes to cylinders of natural and recycled aggregate concrete specimens. Materials. 12 [2], 280. https://doi.org/10.3390/ma12020280 PMid:30654502 PMCid:PMC6356749

Dirección de Vialidad. (2020) Red Vial Nacional-Dimensionamiento y Características. Ministerio de Obras Públicas. http://www.vialidad.cl/areasdevialidad/gestionvial/Documents/RedVialNacional2019.pdf

Brand, A.S.; Roesler, J.R. (2015) Ternary concrete with fractionated reclaimed asphalt pavement. ACI Mater. J. 112 [1], 155-164. https://doi.org/10.14359/51687176

Copeland, A. (2011) Reclaimed asphalt pavement in asphalt mixtures: state of the practice. Rep No FHWA-HRT-11-021, Federal Highway Administration (FHWA), McLean, Virginia. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/11021/11021.pdf

Shi, X.; Mukhopadhyay, A.; Liu, K-W. (2017) Mix design formulation and evaluation of Portland cement concrete paving mixtures containing reclaimed asphalt pavement. Constr. Build. Mater. 152, 756-768. https://doi.org/10.1016/j.conbuildmat.2017.06.174

MOP - DGOP. (2019) Manual de carreteras de Chile. Vol. 5. Santiago de Chile, Ministerio de Obras Públicas de Chile, 2019.

Huang, B.; Shu, X.; Li, G. (2005) Laboratory investigation of Portland cement concrete containing recycled asphalt pavements. Cem. Concr. Res. 35 [10], 2008-2013. https://doi.org/10.1016/j.cemconres.2005.05.002

Singh, S.; Ransinchung, G.D.; Kumar, P. (2017) An economical processing technique to improve RAP inclusive concrete properties. Constr. Build. Mater. 148, 734-747. https://doi.org/10.1016/j.conbuildmat.2017.05.030

Berry, M.; Stephens, J.; Bermel, B.; Hagel, A.; Schroeder, D. (2013) Feasibility of reclaimed asphalt pavement as aggregate in Portland cement concrete pavements. FHWA/MT-13-009/8207. https://rosap.ntl.bts.gov/view/dot/24948.

Brand, A.S.; Amirkhanian, A.N.; Roesler, J.R. (2014) Flexural capacity of full-depth and two-lift concrete slabs with recycled aggregates. Transp. Res Rec. 2456, 64-72. https://doi.org/10.3141/2456-07

Hossiney, N.; Tia, M.; Bergin, M.J. (2010) Concrete containing RAP for use in concrete pavement. Int. J. Pavem. Res. Technol. 3 [5], 251-258. http://www.ijprt.org.tw/files/sample/V3N5%284%29.pdf.

Erdem, S.; Blankson, M.A. (2014) Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate. J. Hazard. Mater. 264, 403-410. https://doi.org/10.1016/j.jhazmat.2013.11.040 PMid:24316812

Ben Saïd, S.E.E.; El Euch Khay, S.; Achour, T.; Loulizi, A. (2017) Modelling of the adhesion between reclaimed asphalt pavement aggregates and hydrated cement paste. Constr. Build. Mater. 152, 839-846. https://doi.org/10.1016/j.conbuildmat.2017.07.078

Getahun, M.A.; Shitote, S.M.; Gariy, Z.C.A. (2018) Experimental investigation on engineering properties of concrete incorporating reclaimed asphalt pavement and rice husk ash. Buildings. 8 [9], 115. https://doi.org/10.3390/buildings8090115

Chyne, J.M.; Sepuri, H.K.; Thejas, H.K. (2019) A review on recycled asphalt pavement in cement concrete. Int. J. Latest Eng. Res. Appl. 4 [2], 9-18. http://www.ijlera.com/papers/v4-i2/2.201902010.pdf.

Singh, S.; Ransinchung, G.D.R.N.; Kumar, P. (2019) Feasibility study of RAP aggregates in cement concrete pavements. Road Mater. Pavem. Des. 20 [1], 151-170. https://doi.org/10.1080/14680629.2017.1380071

Al-Mufti, R.L.; Fried, A.N. (2017) Improving the strength properties of recycled asphalt aggregate concrete. Constr. Build. Mater. 149, 45-52. https://doi.org/10.1016/j.conbuildmat.2017.05.056

Singh, S.; Ransinchung, G.D.R.N. (2020) Laboratory and field evaluation of RAP for cement concrete pavements. J. Transp. Eng. 146 [2], 1-11. https://doi.org/10.1061/JPEODX.0000162

Shi, X.; Mukhopadhyay, A.; Zollinger, D.; Huang, K. (2021) Performance evaluation of jointed plain concrete pavement made with portland cement concrete containing reclaimed asphalt pavement. Road Mater. Pavem. Des. 22 [1], 59-81. https://doi.org/10.1080/14680629.2019.1616604

NCh1498 (2012) Concrete and mortar - Mixing water - Classification and requirements. Chilean Standard.

NCh170 (1985) Concrete - General requirement. Chilean standard.

Ministry of Housing and Urbanism. (2018) Código de normas y especificaciones técnicas de obras de pavimentación, Editora e imprenta MAVAL S.P.A., Santiago de Chile, 1-340 p, (2018).

NCh1017 (2009) Concrete-Making in the field and curing specimens for compression, flexural and spitting tensile tests. Chilean Standard.

NCh 1037 (2009) Concrete - Test for compressive strength of molded cubes and cylinders. Chilean Standard.

NCh1038 (2009) Concrete - Test for flexural tensile strength. Chilean Standard.

EN 12697-44 (2011) Bituminous mixtures - Test methods - Part 44: Crack propagation by semi-circular bending test. Spanish standard.

Al-Mufti, R.L.; Fried, A.N. (2017) Improving the strength properties of recycled asphalt aggregate concrete. Constr. Build. Mater. 149, 45-52. https://doi.org/10.1016/j.conbuildmat.2017.05.056

El Euch Ben Said, S.; El Euch Khay, S.; Loulizi, A. (2018) Experimental investigation of PCC incorporating RAP. Int. J. Concr. Struct. Mater. 12, 8. https://doi.org/10.1186/s40069-018-0227-x

Abraham, S.M.; Ransinchung, G.D.R.N. (2018) Influence of RAP aggregates on strength, durability and porosity of cement mortar. Constr. Build. Mater. 189, 1105-1112. https://doi.org/10.1016/j.conbuildmat.2018.09.069

Ardiansyah, A.; Mardhia, M.M.; Handayaningsih, S. (2018) Analogy-based model for software project effort estimation. Int. J. Adv. Intell. Informatics. 4 [3], 251-260. https://doi.org/10.26555/ijain.v4i3.266

Publicado

2021-05-20

Cómo citar

Marín-Uribe, C. ., & Navarro-Gaete, R. . (2021). Relaciones empíricas entre la resistencia a compresión y a flexión de hormigones para pavimentos, fabricados con material asfáltico recuperado, empleando distintas configuraciones de probeta. Materiales De Construcción, 71(342), e249. https://doi.org/10.3989/mc.2021.11520

Número

Sección

Artículos