Soil biostabilisation and interaction with compaction processes for earthen engineering structures production

Authors

DOI:

https://doi.org/10.3989/mc.2021.00221

Keywords:

Particle size distribution, Mineralizer, Kinetic, Compressive strength

Abstract


Interaction between microbially induced calcium carbonate precipitation (MICP) and compaction procedures to stabilise raw soil materials has been studied with the aim of producing earthen engineering structures. Initial tests to optimise MICP in aqueous medium and in selected soils were performed. MICP and compaction were finally applied to assess medium-size elements. The main result was that sandy soils should be compacted before irrigation treatment to close the existing voids and prevent bacterial sweeping, whereas clayey soils should be compacted after irrigation treatment to avoid the plugging effect. MICP improved small sand soil compressive strength by up to 32% over the value reached by compaction alone. However, MICP had no positive effect on coarse soils and soils with an optimum particle size distribution: MICP treatment was not able to fill large connected voids in the first case and it caused little void generation due to bacteria sporulation in the second.

Downloads

Download data is not yet available.

References

Easton, D.; Wright, C. (2007) The rammed earth house, Chelsea Green Publishing, Vermont (2007).

Minke, G. (2012) Building with earth. Design and technology of a sustainable architecture, Third Edit, Birkhäuser Berlin, Boston (2012). https://doi.org/10.1515/9783034608725

Chang, I.; Jeon, M.; Cho, G.C. (2015) Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries. Int. J. Polym. Sci. 1-9. https://doi.org/10.1155/2015/326745 PMid:26406682

Achal, V.; Mukherjee, A. (2015) A review of microbial precipitation for sustainable construction. Constr. Build. Mater. 93, 1224-1235. https://doi.org/10.1016/j.conbuildmat.2015.04.051

Omoregie, A.I.; Khoshdelnezamiha, G.; Ong, D.E.L.; Nissom, P.M. (2017) Microbial-induced carbonate precipitation using a sustainable treatment technique. Int. J. Serv. Manag. Sustain. 2 [1], 17-31. Retrieved from http://www.ijsmssarawak.com/ijsms_vol_2/No2_MICP_Armstrong.pdf.

Cheng, L.; Shahin, M.A. (2019) Microbially induced calcite precipitation (MICP) for soil stabilization. Ecological wisdom inspired restoration engineering. 47-68. https://doi.org/10.1007/978-981-13-0149-0_3

Mujah, D.; Shahin, M.A.; Cheng, L. (2017) State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol. J. 34 [6], 524-537. https://doi.org/10.1080/01490451.2016.1225866

Ivanov, V.; Chu, J; (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Bio/Technology. 7, 139-153. https://doi.org/10.1007/s11157-007-9126-3

Whiffin, V.S.; Van Paassen, L.A.; Harkes, M.P. (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24 [5], 417-423. https://doi.org/10.1080/01490450701436505

Dhami, N.K.; Reddy, M.S.; Mukherjee, A. (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front. Microbiol. 4, 1-13. https://doi.org/10.3389/fmicb.2013.00314 PMid:24194735 PMCid:PMC3810791

Wei, S.; Cui, H.; Jiang, Z.; Liu, H.; He, H.; Fang, N. (2015) Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian J. Microbiol. 46 [2], 455-464. https://doi.org/10.1590/S1517-838246220140533 PMid:26273260 PMCid:PMC4507537

Al-Thawadi, S. (2011) Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J. Adv. Sci. Eng. Res. 1, 98-114. Retrieved from https://www.researchgate.net/publication/230603500_Ureolytic_Bacteria_and_Calcium_Carbonate_Formation_as_a_Mechanism_of_Strength_Enhancement_of_Sand.

Ginn, T.R.; Murphy, E.M.; Chilakapati, A.; Seeboonruang, U. (2001) Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media. J. Contam. Hydrol. 48 [1-2], 121-149. https://doi.org/10.1016/S0169-7722(00)00168-6

Cheng, L.; Cord-Ruwisch, R. (2014) Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation. Geomicrobiol. J. 31 [5], 396-406. https://doi.org/10.1080/01490451.2013.836579

Ivanov, V.; Chu, J.; Stabnikov, V. (2015) Basics of construction microbial biotechnology. Biotechnologies and biomimetics for civil engineering, Springer International Publishing. 21-56 (2015). https://doi.org/10.1007/978-3-319-09287-4_2

Ferris, F.G.; Stehmeier, L.G. (1992) Bacteriogenic mineral plugging. United States patent. Retrieved from https://patents.google.com/patent/US5143155A/id.

Springham, D.G. (1984) Microbiological methods for the enhancement of oil recovery. Biotechnol. Genet. Eng. Rev. 1 [1], 187-222. https://doi.org/10.1080/02648725.1984.10647786

Finnerty, W.R.; Singer, M.E. (1983) Microbial enhancement of oil recovery. Nat. Biotechnol. 1, 47-54. https://doi.org/10.1038/nbt0383-47

Jonkers, H.M.; Thijssen, A.; Muyzer, G.; Copuroglu, O.; Schlangen, E. (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36 [2], 230-235. https://doi.org/10.1016/j.ecoleng.2008.12.036

Van Tittelboom, K.; De Belie, N.; De Muynck, W.; Verstraete, W. (2010) Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40 [1], 157-166. https://doi.org/10.1016/j.cemconres.2009.08.025

Bang, S.S.; Lippert, J.J.; Yerra, U.; Mulukutla, S.; Ramakrishnan, V. (2010) Microbial calcite, a bio-based smart nanomaterial in concrete remediation. Int. J. Smart Nano Mater. 1 [1], 28-39. https://doi.org/10.1080/19475411003593451

Jonkers, H.M. (2011) Bacteria-based self-healing concrete. Heron. 56 [1-2], 5-16.

Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. (2014) Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 56, 139-152. https://doi.org/10.1016/j.cemconres.2013.11.009

Sierra-Beltran, M.G.; Jonkers, H.M.; Schlangen, E. (2014) Characterization of sustainable bio-based mortar for concrete repair. Constr. Build. Mater. 67, 344-352. https://doi.org/10.1016/j.conbuildmat.2014.01.012

Vijay, K.; Murmu, M.; Deo, S.V. (2017) Bacteria based self healing concrete - A review. Constr. Build. Mater. 152, 1008-1014. https://doi.org/10.1016/j.conbuildmat.2017.07.040

Ivanov, V.; Stabnikov, V. (2017) Construction biotechnology. Biogeochemistry, microbiology and biotechnology of construction materials and processes, Springer, Ed. Singapore (2017).

Della Vecchia, G.; Morales, L.; Garzón, E.; Jommi, C.; Romero, E. (2010) Modelling criteria for a microbiologically stabilised compacted soil in the framework of elastoplasticity. Unsaturated Soils, Two Volume Set (1st ed.). In E. Alonso & A. Gens (Eds.), 5th International Conference on Unsaturated Soils. Barcelona: Taylor&Francis. 795-801. https://doi.org/10.1201/b10526-123

Arya, C.F.; Augustine, J.; Parengal, H.; Ravindran, A.D. (2016) Microbial geotechnology: evaluation of strength and structural properties of microbial stabilized mud block (MSMB). Int. J. Sci. Eng. Res. 7 [1], 278-282. Retrieved from https://www.ijser.org/researchpaper/MICROBIAL-GEOTECHNOLOGY-EVALUATION-OF-STRENGTH-AND-STRUCTURAL-PROPERTIES-OF-MICROBIAL-STABILIZED-MUD-BLOCK-MSMB.pdf.

Mutitu, K.D.; Munyao, M.O.; Wachira, M.J.; Mwirichia, R.; Thiong'o, K.J.; Marangu, M.J. (2019) Effects of biocementation on some properties of cement-based materials incorporating Bacillus Species bacteria - a review. J. Sustain. Cem. Mater. 8 [5], 309-325. https://doi.org/10.1080/21650373.2019.1640141

Morales, L.; Romero, E.; Jommi, C.; Garzón, E.; Giménez, A. (2014) Feasibility of a soft biological improvement of natural soils used in compacted linear earth construction. Acta Geotech. 10, 157-171. https://doi.org/10.1007/s11440-014-0344-x

De Muynck, W.; Debrouwer, D.; De Belie, N.; Verstraete, W. (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38 [7], 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005

Van Paassen, L.A.; Harkes, M.P.; Van Zwieten, G.A.; Van Der Zon, W.H.; Van Der Star, W.R.L.; Van Loosdrecht, M.C.M. (2009) Scale up of biogrout: a biological ground reinforcement method. Proc. 17th Int. Conf. Soil Mech. Geotech. Eng. Acad. Pract. Geotech. Eng. 3, 2328-2333.

Bang, S.S.; Galinat, J.K.; Ramakrishnan, V. (2001) Calcite precipitation induced by polyurethane-immobilized bacillus pasteurii. Enzyme Microb. Technol. 28 [4-5], 404-409. https://doi.org/10.1016/S0141-0229(00)00348-3

ASTM C42 / C42M-20, Standard test method for obtaining and testing drilled cores and sawed beams of concrete, ASTM International, West Conshohocken, PA. 2020.

Bernat-Maso, E.; Gil, L.; Escrig, C.; Barbé, J.; Cortés, P. (2018) Effect of Sporosarcina Pasteurii on the strength properties of compressed earth specimens. Mater. Constr. 68 [329], e143. https://doi.org/10.3989/mc.2018.12316

ASTM D1557-12e1, Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)), ASTM International, West Conshohocken, PA. 2012.

Bernat-Maso, E.; Teneva, E.; Escrig, C.; Gil, L. (2017) Ultrasound transmission method to assess raw earthen materials. Constr. Build. Mater. 156, 555-564. https://doi.org/10.1016/j.conbuildmat.2017.09.012

ASTM D1194-94, Standard test method for bearing capacity of soil for static load and spread footings (Withdrawn 2003), ASTM International, West Conshohocken, PA. 1994.

DeJong, J.T.; Fritzges, M.B.; Nüsslein, K. (2006) Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenvironmental Eng. 132 [11], 1381-1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381)

Kubantseva, N.; Hartel, R.W. (2002) Solubility of calcium lactate in aqueous solution. Food Rev. Int. 18 [2-3], 135-149. https://doi.org/10.1081/FRI-120014355

Published

2021-08-17

How to Cite

Bernat-Maso, E., Gil, L., Lis, M., & Teneva, E. (2021). Soil biostabilisation and interaction with compaction processes for earthen engineering structures production. Materiales De Construcción, 71(343), e256. https://doi.org/10.3989/mc.2021.00221

Issue

Section

Research Articles