Performance of hemp-FRCM-strengthened beam subjected to cyclic loads

Authors

DOI:

https://doi.org/10.3989/mc.2022.07721

Keywords:

Cyclic loading test, Concrete beam, Vegetal fibres, Hemp, FRCM

Abstract


Fabric-reinforced cementitious matrix (FRCM) composites are materials that are usually applied to strengthen existing structures. In this study, a hemp mesh coated with epoxy was manufactured and combined with a cementitious matrix to strengthen a concrete beam. This beam was subjected to bending cyclic loading tests and a nondestructive modal analysis test. The modal analysis was performed to determine the dynamic elastic properties of the beam under pre-cracking, post-cracking, and strengthened conditions. The beam stiffness increased following strengthening with hemp-FRCM. The results of the experimental cyclic loading test showed that the hemp-FRCM system improved the load-bearing capacity of the beam at the service limit state by 42%. Analytical and numerical models were adjusted and validated using the experimental results, and both proved to be effective calculation tools. The models accurately reproduced the behaviour of the FRCM-strengthened concrete beam if the strengthening connection could prevent sliding and mortar debonding failures.

Downloads

Download data is not yet available.

References

Tahar, H.D.; Abderezak, R.; Rabia, B.; Tounsi, A. (2021) Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses. Coupled Syst. Mech. 10 [2] , 161-184.

Bisby, L.A.; Roy, E.C.; Ward, M.; Stratford, T.J. (2009) Fibre reinforced cementitious matrix systems for fire-safe flexural strengthening of concrete: Pilot testing at ambient temperature. Adv. Compos. Constr. ACIC 2009 - Proc. 4th Int. Conf. 449-460.

Bisby, P.L.; Stratford, T.; Hart, C.; Farren, S. (2013) Fire performance of well-anchored TRM, FRCM and FRP flexural strengthening systems. Adv. Compos. Constr. ACIC 2013 - Conf. Proc. 98-109.

Larrinaga, P.; Garmendia, L.; Piñero, I.; San-José, J.T. (2020) Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG). Constr. Build. Mater. 235, 117790.

Raoof, S.M.; Bournas, D.A. (2017) TRM versus FRP in flexural strengthening of RC beams: Behaviour at high temperatures. Constr. Build. Mater. 154, 424-437.

Younis, A.; Ebead, U.; Shrestha, K.C. (2017) Different FRCM systems for shear-strengthening of reinforced concrete beams. Constr. Build. Mater. 153, 514-526.

Escrig, C.; Gil, L.; Bernat-Maso, E. (2017) Experimental comparison of reinforced concrete beams strengthened against bending with different types of cementitious-matrix composite materials. Constr. Build. Mater. 137, 317-329.

Cevallos, O.A.; Olivito, R.S.; Codispoti, R.; Ombres, L. (2015) Flax and polyparaphenylene benzobisoxazole cementitious composites for the strengthening of masonry elements subjected to eccentric loading. Compos. Part B Eng. 71, 82-95.

Wambua, P.; Ivens, J.; Verpoest, I. (2003) Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63 [9] , 1259-1264.

Rosamaria C. (2013) Mechanical performance of natural fiber-reinforced composites for the strengthening of ancient masonry. University of Calabria.

Huang, L.; Yan, B.; Yan, L.; Xu, Q.; Tan, H.; Kasal, B. (2016) Reinforced concrete beams strengthened with externally bonded natural flax FRP plates. Compos. Part B Eng. 91, 569-578.

Snoeck, D.; Smetryns, P.A.; De Belie, N. (2015) Improved multiple cracking and autogenous healing in cementitious materials by means of chemically-treated natural fibres. Biosyst. Eng. 139, 87-99.

Cevallos, O.A.; Olivito, R.S. (2015) Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Compos. Part B Eng. 69, 256-266.

Mercedes, L.; Gil, L.; Bernat-Maso, E. (2018) Mechanical performance of vegetal fabric reinforced cementitious matrix ( FRCM ) composites. Constr. Build. Mater. 175, 161-173.

Ardanuy, M.; Claramunt, J.; Toledo-Filho R.D. (2015) Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 79, 115-128.

Ahmad, H.; Fan, M. (2018) Interfacial properties and structural performance of resin-coated natural fibre rebars within cementitious matrices. Cem. Concr. Compos. 87, 44-52.

Micelli, F.; Aiello, M.A. (2016) Residual tensile strength of dry and impregnated reinforcement fibres after exposure to alkaline environments. Compos. Part B Eng. 159, 490-501.

Donnini, J.; Corinaldesi, V. (2017) Mechanical characterization of different FRCM systems for structural reinforcement. Constr. Build. Mater. 145, 565-575.

D’Antino, T.; Papanicolaou, C. (2017) Mechanical characterization of textile reinforced inorganic-matrix composites. Compos. Part B Eng. 127, 78-91.

Shao, Y.; Billington, S.L. (2020) Flexural performance of steel-reinforced engineered cementitious composites with different reinforcing ratios and steel types. Constr. Build. Mater. 231, 117159.

EN 12390. Testing hardened concrete. Part 3: compressive strength of test specimens. n.d.

Ministerio de Fomento. Comisión Permanente del Hormigón. (2011) EHE-08 Intrucción de hormigon estructural,. 5a Edición.

EN 1504-3. (2005) EN 1504-3 Products and systems for the protection and repair of concrete structures - Definitions, requirements, quality control and evaluation of conformity - Part 3: Structural and non-structural repair.

EN 1015-11:2019. (2019) Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar.

Bernat-Maso, E.; Teneva, E.; Escrig, C.; Gil, L. (2017) Ultrasound transmission method to assess raw earthen materials. Constr. Build. Mater. 156, 555-564.

Simulia (2011) Abaqus 6.14. User´s Manual.

Salman, M.M.; Al-Amawee, A. (2006) The Ratio between static and dynamic modulus of elasticity in normal and high strength concrete. J. Eng. Dev. 10 [2] , 163-174.

FEMA 461. (2007) Interim Testing protocols for determining the seismic performance characteristics of structural and nonstructural components.

Ministerio de Fomento (2019) Documento básico SE-seguridad estructural.

BS EN 1992-1-1. (2004) Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings. Br. Stand. Inst. 1, 230.

Bertolesi, E.; Carozzi, F.G.; Milani, G.; Poggi, C. (2014) Numerical modeling of Fabric Reinforce Cementitious Matrix composites (FRCM) in tension. Constr. Build. Mater. 70, 531-548.

Alfarah, B.; López-Almansa, F.; Oller, S. (2017) New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Eng. Struct. 132, 70-86.

Jorge, NL. (2008) Analisis de la aplicacion del metodo de los elementos finitos al modelado de elementos de hormigón armado.

Sümer, Y.; Aktaş, M. (2015) Defining parameters for concrete damage plasticity model. 1, 149-155.

Bertolesi, E.; Milani, G.; Poggi, C. (2016) Simple holonomic homogenization model for the non-linear static analysis of in-plane loaded masonry walls strengthened with FRCM composites. Compos. Struct. 158, 291-307.

Zhang, S.; Yang, D.; Sheng, Y.; Garrity, S.W.; Xu, L. (2017) Numerical modelling of FRP-reinforced masonry walls under in-plane seismic loading. Constr. Build. Mater. 134, 649-663.

Mercedes, L.; Bernat-Maso, E.; Gil, L. (2020) In-plane cyclic loading of masonry walls strengthened by vegetal-fabric-reinforced cementitious matrix (FRCM) composites. Eng. Struct. 221, 111097.

Published

2022-03-03

How to Cite

Mercedes, L. ., Mendizábal, V. ., Bernat-Maso, E. ., & Gil, L. . (2022). Performance of hemp-FRCM-strengthened beam subjected to cyclic loads. Materiales De Construcción, 72(345), e270. https://doi.org/10.3989/mc.2022.07721

Issue

Section

Research Articles

Funding data

Ministerio de Economía y Competitividad
Grant numbers RTI2018-099589-B-I00