Performance of hemp-FRCM-strengthened beam subjected to cyclic loads
DOI:
https://doi.org/10.3989/mc.2022.07721Keywords:
Cyclic loading test, Concrete beam, Vegetal fibres, Hemp, FRCMAbstract
Fabric-reinforced cementitious matrix (FRCM) composites are materials that are usually applied to strengthen existing structures. In this study, a hemp mesh coated with epoxy was manufactured and combined with a cementitious matrix to strengthen a concrete beam. This beam was subjected to bending cyclic loading tests and a nondestructive modal analysis test. The modal analysis was performed to determine the dynamic elastic properties of the beam under pre-cracking, post-cracking, and strengthened conditions. The beam stiffness increased following strengthening with hemp-FRCM. The results of the experimental cyclic loading test showed that the hemp-FRCM system improved the load-bearing capacity of the beam at the service limit state by 42%. Analytical and numerical models were adjusted and validated using the experimental results, and both proved to be effective calculation tools. The models accurately reproduced the behaviour of the FRCM-strengthened concrete beam if the strengthening connection could prevent sliding and mortar debonding failures.
Downloads
References
Tahar, H.D.; Abderezak, R.; Rabia, B.; Tounsi, A. (2021) Performance of damaged RC continuous beams strengthened by prestressed laminates plate: Impact of mechanical and thermal properties on interfacial stresses. Coupled Syst. Mech. 10 [2] , 161-184.
Bisby, L.A.; Roy, E.C.; Ward, M.; Stratford, T.J. (2009) Fibre reinforced cementitious matrix systems for fire-safe flexural strengthening of concrete: Pilot testing at ambient temperature. Adv. Compos. Constr. ACIC 2009 - Proc. 4th Int. Conf. 449-460.
Bisby, P.L.; Stratford, T.; Hart, C.; Farren, S. (2013) Fire performance of well-anchored TRM, FRCM and FRP flexural strengthening systems. Adv. Compos. Constr. ACIC 2013 - Conf. Proc. 98-109.
Larrinaga, P.; Garmendia, L.; Piñero, I.; San-José, J.T. (2020) Flexural strengthening of low-grade reinforced concrete beams with compatible composite material: Steel Reinforced Grout (SRG). Constr. Build. Mater. 235, 117790. https://doi.org/10.1016/j.conbuildmat.2019.117790
Raoof, S.M.; Bournas, D.A. (2017) TRM versus FRP in flexural strengthening of RC beams: Behaviour at high temperatures. Constr. Build. Mater. 154, 424-437. https://doi.org/10.1016/j.conbuildmat.2017.07.195
Younis, A.; Ebead, U.; Shrestha, K.C. (2017) Different FRCM systems for shear-strengthening of reinforced concrete beams. Constr. Build. Mater. 153, 514-526. https://doi.org/10.1016/j.conbuildmat.2017.07.132
Escrig, C.; Gil, L.; Bernat-Maso, E. (2017) Experimental comparison of reinforced concrete beams strengthened against bending with different types of cementitious-matrix composite materials. Constr. Build. Mater. 137, 317-329. https://doi.org/10.1016/j.conbuildmat.2017.01.106
Cevallos, O.A.; Olivito, R.S.; Codispoti, R.; Ombres, L. (2015) Flax and polyparaphenylene benzobisoxazole cementitious composites for the strengthening of masonry elements subjected to eccentric loading. Compos. Part B Eng. 71, 82-95. https://doi.org/10.1016/j.compositesb.2014.10.055
Wambua, P.; Ivens, J.; Verpoest, I. (2003) Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63 [9] , 1259-1264. https://doi.org/10.1016/S0266-3538(03)00096-4
Rosamaria C. (2013) Mechanical performance of natural fiber-reinforced composites for the strengthening of ancient masonry. University of Calabria.
Huang, L.; Yan, B.; Yan, L.; Xu, Q.; Tan, H.; Kasal, B. (2016) Reinforced concrete beams strengthened with externally bonded natural flax FRP plates. Compos. Part B Eng. 91, 569-578. https://doi.org/10.1016/j.compositesb.2016.02.014
Snoeck, D.; Smetryns, P.A.; De Belie, N. (2015) Improved multiple cracking and autogenous healing in cementitious materials by means of chemically-treated natural fibres. Biosyst. Eng. 139, 87-99. https://doi.org/10.1016/j.biosystemseng.2015.08.007
Cevallos, O.A.; Olivito, R.S. (2015) Effects of fabric parameters on the tensile behaviour of sustainable cementitious composites. Compos. Part B Eng. 69, 256-266. https://doi.org/10.1016/j.compositesb.2014.10.004
Mercedes, L.; Gil, L.; Bernat-Maso, E. (2018) Mechanical performance of vegetal fabric reinforced cementitious matrix ( FRCM ) composites. Constr. Build. Mater. 175, 161-173. https://doi.org/10.1016/j.conbuildmat.2018.04.171
Ardanuy, M.; Claramunt, J.; Toledo-Filho R.D. (2015) Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 79, 115-128. https://doi.org/10.1016/j.conbuildmat.2015.01.035
Ahmad, H.; Fan, M. (2018) Interfacial properties and structural performance of resin-coated natural fibre rebars within cementitious matrices. Cem. Concr. Compos. 87, 44-52. https://doi.org/10.1016/j.cemconcomp.2017.12.002
Micelli, F.; Aiello, M.A. (2016) Residual tensile strength of dry and impregnated reinforcement fibres after exposure to alkaline environments. Compos. Part B Eng. 159, 490-501. https://doi.org/10.1016/j.compositesb.2017.03.005
Donnini, J.; Corinaldesi, V. (2017) Mechanical characterization of different FRCM systems for structural reinforcement. Constr. Build. Mater. 145, 565-575. https://doi.org/10.1016/j.conbuildmat.2017.04.051
D'Antino, T.; Papanicolaou, C. (2017) Mechanical characterization of textile reinforced inorganic-matrix composites. Compos. Part B Eng. 127, 78-91. https://doi.org/10.1016/j.compositesb.2017.02.034
Shao, Y.; Billington, S.L. (2020) Flexural performance of steel-reinforced engineered cementitious composites with different reinforcing ratios and steel types. Constr. Build. Mater. 231, 117159. https://doi.org/10.1016/j.conbuildmat.2019.117159
EN 12390. Testing hardened concrete. Part 3: compressive strength of test specimens. n.d.
Ministerio de Fomento. Comisión Permanente del Hormigón. (2011) EHE-08 Intrucción de hormigon estructural,. 5a Edición.
EN 1504-3. (2005) EN 1504-3 Products and systems for the protection and repair of concrete structures - Definitions, requirements, quality control and evaluation of conformity - Part 3: Structural and non-structural repair.
EN 1015-11:2019. (2019) Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar.
Bernat-Maso, E.; Teneva, E.; Escrig, C.; Gil, L. (2017) Ultrasound transmission method to assess raw earthen materials. Constr. Build. Mater. 156, 555-564. https://doi.org/10.1016/j.conbuildmat.2017.09.012
Simulia (2011) Abaqus 6.14. User's Manual.
Salman, M.M.; Al-Amawee, A. (2006) The Ratio between static and dynamic modulus of elasticity in normal and high strength concrete. J. Eng. Dev. 10 [2] , 163-174.
FEMA 461. (2007) Interim Testing protocols for determining the seismic performance characteristics of structural and nonstructural components.
Ministerio de Fomento (2019) Documento básico SE-seguridad estructural.
BS EN 1992-1-1. (2004) Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings. Br. Stand. Inst. 1, 230.
Bertolesi, E.; Carozzi, F.G.; Milani, G.; Poggi, C. (2014) Numerical modeling of Fabric Reinforce Cementitious Matrix composites (FRCM) in tension. Constr. Build. Mater. 70, 531-548. https://doi.org/10.1016/j.conbuildmat.2014.08.006
Alfarah, B.; López-Almansa, F.; Oller, S. (2017) New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Eng. Struct. 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022
Jorge, NL. (2008) Analisis de la aplicacion del metodo de los elementos finitos al modelado de elementos de hormigón armado.
Sümer, Y.; Aktaş, M. (2015) Defining parameters for concrete damage plasticity model. 1, 149-155.
Bertolesi, E.; Milani, G.; Poggi, C. (2016) Simple holonomic homogenization model for the non-linear static analysis of in-plane loaded masonry walls strengthened with FRCM composites. Compos. Struct. 158, 291-307. https://doi.org/10.1016/j.compstruct.2016.09.027
Zhang, S.; Yang, D.; Sheng, Y.; Garrity, S.W.; Xu, L. (2017) Numerical modelling of FRP-reinforced masonry walls under in-plane seismic loading. Constr. Build. Mater. 134, 649-663. https://doi.org/10.1016/j.conbuildmat.2016.12.091
Mercedes, L.; Bernat-Maso, E.; Gil, L. (2020) In-plane cyclic loading of masonry walls strengthened by vegetal-fabric-reinforced cementitious matrix (FRCM) composites. Eng. Struct. 221, 111097. https://doi.org/10.1016/j.engstruct.2020.111097
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Ministerio de Economía y Competitividad
Grant numbers RTI2018-099589-B-I00