Carbon fibre-reinforced, alkali-activated slag mortars
DOI:
https://doi.org/10.3989/mc.2007.v57.i288.63Keywords:
alkali-activated slog, mortar, carbon fibre, mechanical properties, corrosionAbstract
The paper describes the effect of carbon fibre on alkaliactivated slag mortar (AAS) mechanical strength, volume stability and reinforcing steel corrosion, compared to its effect on the same properties in Portland cement (PC) properties. Mechanical strength and volume stability tests were performed as set out in the respective Spanish UNE standards. The corrosion rate of steel embedded in the specimens studied was determined from polarization resistance analysis. One of the findings of the study performed was that carbon fibre failed to improve AAS or CP mortar strength. As far as volume stability is concerned, the inclusion of carbon fibres in AAS with a liquid/solid ratio of 0.5 reduced drying shrinkage by about 50%. The effect of carbon fibre on PC mortars differed from its effect on AAS mortars. Studies showed that in the presence of carbonation, steel corrosion reached higher levels in carbon-fibre reinforced AAS mortars; the inclusion of 1% carbon fibre improved corrosion resistance perceptibly in these same mortars, however, when exposed to chloride attack.
Downloads
References
(1) Purdon, A. O.: “The action of alkalis on blast-furnace slag”, Journal of the Society of Chemical Industry, 59 (1940), pp. 191-202.
(2) Glukhovskij, V.; Zaitsev, Y. y Pakhomow, V.: “Slag-alkaline cements and concrete-structures, properties, technological and economical aspects of the use”, Silicates Industriels, 10 (1983), pp. 197-200.
(3) Glukhovskij, V.; Rostowkaja, G. S. y Rumyna, G. V.: “High strength slag-akali cement”, VII ICCC (París) (1980), vol. III, V-164-168.
(4) Puertas, F.; Gutierrez, R. de; Fernández-Jiménez, A.; Delvasto, S. y Maldonado, J.: “Morteros de cementos alcalinos. Resistencia química al ataque por sulfatos y agua de mar”, Mater. Construcc., vol. 52, nº 267 (2002), pp. 55-71.
(5) Byfors, K.; Klingstedt, G.; Lehtonen, V.; Pyy, H. y Romben, L.: “Durability of concrete made with alkali-activated slag”, 3rd Inter. Conf. on fly-ash, silica fume, slag and natural pozzolans in concrete (Norway), vol. 2 (1989), pp. 1429-1466.
(6) Deja, J. y Malolepszy, J.: “Resistance of alkali-activated slag mortars to chlorine solution”, 3rd Inter. Conf. on fly-ash, silica fume, slag and natural pozzolans in concrete (Norway), vol. 2 (1989), SP 114-75, pp. 1547-1563.
(7) Bakharev, T.; Sanjayan, J. G. y Cheng, Y. B.: “Resistance of alkali-activated slag concrete to acid attack”, Cem. Concr. Res., vol. 33 (2003), pp. 1607-1611. doi:10.1016/S0008-8846(03)00125-X
(8) Puertas, F.; Amat, T.; Fernández-Jiménez, A. y Vázquez, T.: “Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres”, Cem. Concr. Res., vol. 33 (2003), pp. 2031-2036. doi:10.1016/S0008-8846(03)00222-9
(9) Krivenko, P. V.: “Alkaline cements and concretes: problems of durability”, 2nd Intern. Conf. Alkaline Cements and Concretes (Kiev), 1999, pp. 3-43.
(10) Gutiérrez, R. de; Maldonado, J. y Gutiérrez, C.: “Resistencia a temperaturas elevadas de escorias activadas alcalinamente”, Mater. Construcc., vol. 54, nº 276 (2004), pp. 87-92.
(11) Fernández-Jiménez, A.; Puertas, F.; Sobrados, I. y Sanz, J.: “Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator”, J. Am. Ceram. Soc., 86 (8) (2003), pp. 1389-1394.
(12) Escalante-García, J. I.; Fuentes, A. F.; Gorokhovsky, A.; Fraile-Luna, P. E. y Mendoza-Suárez, G.: “Hydration products and reactivity of blast-furnace slag activated by various alkalis”, J. Am. Ceram. Soc., 86 (12) (2003), pp. 2148-2153.
(13) Collins, F. y Sanjayan, J. G.: “Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete”, Cem. Concr. Res., vol. 30 (2000), pp. 1401-1406. doi:10.1016/S0008-8846(00)00327-6
(14) Palacios, M. y Puertas, F.: “Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes”, Cem. Concr. Res., vol. 37 (2007), pp. 691-702. doi:10.1016/j.cemconres.2006.11.021
(15) Puertas, F.; Amat, T. y Vázquez, T.: “Comportamiento de morteros de cementos alcalinos reforzados con fibras acrílicas y de polipropileno”, Mater. Construcc., vol. 50, nº 259 (2000), pp. 69-84.
(16) Puertas, F.; Gil-Maroto, A.; Palacios, M. y Amat, T.: “Alkali-activated slag mortars reinforced with AR glas fibre. Performance and properties”. Mater. Construcc., nº 283, 79-90 (2006).
(17) Lin, S.: “Application of short carbon-fiber in construction”, Sample Journal, 30 (5) (1995), pp. 39-45.
(18) Garcés, P.; Fraile, J.; Vilaplana-Ortego, E.; Cazorla-Amorós, D.; Alcocel, E. G.ª y Andión, L. G.ª: “Effect of Carbon fibers on the mechanical properties and corrosion levels of Portland cement mortars”, Cem. Concr. Res., 35 (2005), pp. 324-331. doi:10.1016/j.cemconres.2004.05.013
(19) Garcés, P.; Andión, L. G.ª; Catalá, G.; Varga, I. de la y Zornoza, E.: “Corrosion of steel reinforcement in structural concrete with carbon material addition”, Corrosion Science., vol. 49 (2007), pp. 2557-2566. doi:10.1016/j.corsci.2006.12.009
(20) Sugama, T.; Kukacka, L. E.; Carciello, N. y Gallen, B.: “Oxidation of carbon fiber surfaces for improvement in fiber-cement interfacial bond at a hidrothermal temperature of 300º C”, Cem. Concr. Res., 18 (2) (1988), pp. 290-300. doi:10.1016/0008-8846(88)90013-0
(21) UNE-EN-196-1: Métodos de ensayos de cementos. Parte 1: determinación de resistencias mecánicas.
(22) UNE-80112:1989 ex: Métodos de ensayo de cementos. Ensayos físicos. Determinación de la retracción de secado y de linchamiento en agua.
(23) Stern, M. y Geary, A. L.: “A theorical analysis of the shape of polarization curves”, J. Elect. Soc., vol. 104, nº 1 (1957), p. 56.
(24) Stern, M. y Weisert, E. D.: “Experimental observations on the relation between polarization resistance and corrosion rate”, Proc. Am. Soc. Test. Mater, vol. 59 (1959), pp. 1280.
(25) Palacios, M.: Efecto de aditivos orgánicos en las propiedades y comportamiento de pastas y morteros de escorias activadas alcalinamente. Tesis Doctoral. Universidad Autónoma de Madrid, 2006.
(26) Puertas, F.; Palacios, M. y Vázquez, T.: “Carbonation process on alkali-activated slag mortars”, Journal of Material Science, 41 (2006), pp. 3071-3082. doi:10.1007/s10853-005-1821-2
(27) Palacios, M. y Puertas, F.: “Alkali-activated slag cements. Process and mechanisms of carbonation”, Journal of American Ceramic Society, 89, 10 (2006), pp. 3211-3221.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.