Structural models of randomly packed Tobermorite-like spherical particles: A simple computational approach


  • R. González-Teresa LABEIN-Tecnalia, Derio
  • Víctor Morales-Florez Centro de Investigaciones de la Cartuja, CSIC, Sevilla
  • Hegoi Manzano LABEIN-Tecnalia, Derio
  • Jorge S. Dolado LABEIN-Tecnalia, Unidad Asociada LABEIN-Tecnalia/CSIC, Derio



C-S-H gel, colloidal model, modelling


In this work, and in order to bring together the atomistic and colloidal viewpoints, we will present a Monte Carlo computational scheme which reproduces the colloidal packing of nano-spherical crystalline tobermorite-like particles. Different Low Density (LD) CS- H and High Density (HD) C-S-H structures will be developed just by varying the computational packing parameters. Finally, the structures resulting from our computational experiments will be analyzed in terms of their densities, surface areas and their mechanical properties.


Download data is not yet available.


(1) Taylor, H. F. W.: “Proposed structure for calcium silicate hydrate gel”, Journal of the American Ceramic Society, vol. 69 (6) (1986), pp. 464-467. doi:10.1111/j.1151-2916.1986.tb07446.x

(2) Richardson, I. G.: “Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, beta-dicalcium silicate, Portland cement, and blends of Portland cement with blast-fumace slag, metakaolin, or silica fume”, Cement and Concrete Research, vol. 34 (9) (2004), pp. 1733-1777. doi:10.1016/j.cemconres.2004.05.034

(3) Cong, X. and Kirkpatrick, R. J.: “29Si MAS NMR study of the structure of calcium silicate hydrate”, Adv. Cem. Based Mater, vol. 3 (1996), pp. 144-146. doi:10.1016/S1065-7355(96)90046-2

(4) Brough, A. R.; Dobson, C. M.; Richardson, I. G., and Groves, G. W.: “In situ solid state NMR studies of Ca3SiO5: Hydration at room temperature and at elevated temperatures using 29Si enrichment”, Journal of Materials Science, vol. 29 (1994), pp. 3926-3940. doi:10.1007/BF00355951

(5) Cong, X. and Kirkpatrick, R. J.: “17O MAS NMR Investigation of the structure of the calcium silicate hydrate gel,” J. Am. Ceram. Soc., vol. 79 [6] (1996), pp. 1585-92. doi:10.1111/j.1151-2916.1996.tb08768.x

(6) Yu, P.; Kirkpatrick, R. J.; Poe, B.; McMillan, P. F., and Cong, X.: “Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and farinfrared spectroscopy,” J. Am. Ceram. Soc., vol. 82 [3] (1999), pp. 742-48.

(7) Powers, T. C.: “Physical properties of cement paste”, Fourth International Symposium on Chemistry of Cement, pp. 577-609. Washington, DC, National Bureau of Standards (1960).

(8) Feldman, R. F. and Sereda, P. J.: “A new model of hydrated cement and its practical applications”, Eng. J. Can., vol. 53 (1970), pp. 53-59.

(9) Wittmann, F. H.: “Trends in research on creep and shrinkage of concrete in cement production and use”. J. Skalny, New Hampshire, pp. 143-161, Engeneering Foundation-New York (1979).

(10) Jennings, H. M.: “A model for the microstructure of calcium silicate hydrate in cement paste”, Cem. Concr. Res. vol. 30 (2000), pp. 101-116. doi:10.1016/S0008-8846(99)00209-4

(11) Jennings, H. M.: “Refinements to colloid model of C-S-H in cement”, Cem. Concr. Res., vol. 38 (2008), pp. 275-289. doi:10.1016/j.cemconres.2007.10.006

(12) Allen, A. J., et al.: “Composition and density of nanoscale calcium silicate hydrate in cement”, Nature Materials, vol. 6 (2007), pp. 311-316. doi:10.1038/nmat1871 PMid:17384634

(13) Dolado, J. S., et al.: Journal of the American Ceramic Society, vol. 90, nº 12 (2007), pp. 3938-3942.

(14) Pellenq, R. J.-M. et al.: “A realistic molecular model of cement hydrates”; PNAS vol. 106, nº 38 (2009), pp. 16102-16107. doi:10.1073/pnas.0902180106 PMid:19805265    PMCid:2739865

(15) Pelleq, M., et al.: “Engineering the bonding scheme in C-S-H: the iono-covalent framework”, Cement and Concrete Research, vol. 38 (2008), pp. 159-174. doi:10.1016/j.cemconres.2007.09.026

(16) Manzano, H.; Dolado, J. S.; Ayuela, A.: “Elastic properties of the main species present in Portland cement pastes”, Acta Materialia, vol. 57, nº 5 (2009), pp. 1666-1674. doi:10.1016/j.actamat.2008.12.007

(17) Shahsavari, R., et al.: “First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of Tobermorite and Jennite”, Journal of the American Ceramic Society, vol. 92, nº10 (2009), pp. 2323-2330. doi:10.1111/j.1551-2916.2009.03199.x

(18) Gmira, A., et al.: “Microscopic physical basis of the poromechanical behavior of cement-based materials”, Materials and Structures, vol. 37 (2004), pp. 3-14. doi:10.1007/BF02481622

(19) Kalinichev, A. G.; Wang, J. and Kirkpatrick, R. J.: “Molecular dynamics modeling of the structure, dynamics and energetics of mineral-water interfaces: Application to cement materials”, Cement and Concrete Research, vol. 37 (2007), pp. 337-347. doi:10.1016/j.cemconres.2006.07.004

(20) Richardson, I.G.: “The calcium silicate hydrates”, Cem. Concr. Res., vol. 38 (2008), pp. 137-158. doi:10.1016/j.cemconres.2007.11.005 doi:10.1016/j.cemconres.2007.11.005

(21) Morales-Flórez, V., et al. The Cluster Model: “A simulation of the Aerogel Structure as a Hierarchically-Ordered Arrangement of Randomly Packed Spheres”. Journal of Sol-Gel Science and Technology, vol. 35 (2005), pp. 203-210. doi:10.1007/s10971-005-2363-4

(22) Morales-Flórez, V. and Brunet, F.: “Structural models of random packing of spheres extended to bricks: Simulation of the nanoporous Calcium-Silicate-Hydrates”, Molecular Simulation, vol. 35, nº 12-13 (2009), pp. 1001-1006. doi:10.1080/08927020903033117

(23) Constantinedes, G.; Ulm, Franz-Josef: “The nanogranular nature of C-S-H”, Journal of the Mechanics and Physics of Solids, vol. 55 (2007), pp. 64-90.

(24) Allen, A. and Thomas, J. J.: “Analysis of cement paste and C-S-H gel by small-angle neutron scattering”, Cement and Concrete Research, vol. 37 (2007), pp. 319-324. doi:10.1016/j.cemconres.2006.09.002

(25) Thomas, J. J.; Chen, J. J.; Allen, A. J. and Jennings, H. M.: “Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes”; Cem. Concr. Res., vol. 34 (2004), pp. 2297-2307. doi:10.1016/j.cemconres.2004.04.007

(26) Thomas, Jeffrey J.; Jennings, Hamlin M., and Allen, Andrew J.: “The Surface Area of Hardened Cement Paste as Measured by Various Techniques”, Concrete Science and Engineering, vol. 1 (1999), pp. 45-64.

(27) Tennis, P. D. and Jennings, H. M.: “A model of two types of calcium silicate hydrate in the microstructure of Portland cement pastes”, Cem. Concr. Res., vol. 30 (2000), pp. 855-863. doi:10.1016/S0008-8846(00)00257-X

(28) Garci Juenger, M. C. and Jennings, H. M: “The use of nitrogen adsorption to asses the microstructure of cement paste”, Cem. Concr. Res., vol. 31 (2001), pp. 883-892. doi:10.1016/S0008-8846(01)00493-8

(29) Manzano, H.: “Atomistic Simulation studies of The Cement Paste Components”, Thesis; University of the Basque Country UPV/EHU (2009).

(30) Constantinides, G. and Ulm, F.-J.: “The nanogranular nature of C-S-H”, J. Mech. Phys. Sol., vol. 55 (2007), pp. 64-90. doi:10.1016/j.jmps.2006.06.003

(31) Kröner, E.: Statistical continuum mechanics, Springer-Verla (1972).




How to Cite

González-Teresa, R., Morales-Florez, V., Manzano, H., & Dolado, J. S. (2010). Structural models of randomly packed Tobermorite-like spherical particles: A simple computational approach. Materiales De Construcción, 60(298), 7–15.



Research Articles