Modelos estructurales del empaquetamiento aleatorio de partículas esféricas de Tobermorita: una aproximación computacional sencilla

Autores/as

  • R. González-Teresa LABEIN-Tecnalia, Derio
  • Víctor Morales-Florez Centro de Investigaciones de la Cartuja, CSIC, Sevilla
  • Hegoi Manzano LABEIN-Tecnalia, Derio
  • Jorge S. Dolado LABEIN-Tecnalia, Unidad Asociada LABEIN-Tecnalia/CSIC, Derio

DOI:

https://doi.org/10.3989/mc.2010.57010

Palabras clave:

gel C-S-H, modelo coloidal, simulación computacional

Resumen


En este trabajo y con el objetivo de conjugar el punto de vista atomístico y coloidal, presentamos un método computacional Monte Carlo que reproduce el empaquetamiento coloidal de nano-partículas esféricas cristalinas de tipo Tobermorita. Variando los parámetros computacionales de empaquetamiento diferentes estructuras tipo Low Density (LD) C-S-H y High Density (HD) C-S-H han sido creadas. Posteriormente, las estructuras resultantes de nuestros experimentos computacionales han sido analizadas en términos de sus densidades, áreas específicas y propiedades mecánicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Taylor, H. F. W.: “Proposed structure for calcium silicate hydrate gel”, Journal of the American Ceramic Society, vol. 69 (6) (1986), pp. 464-467. doi:10.1111/j.1151-2916.1986.tb07446.x

(2) Richardson, I. G.: “Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, beta-dicalcium silicate, Portland cement, and blends of Portland cement with blast-fumace slag, metakaolin, or silica fume”, Cement and Concrete Research, vol. 34 (9) (2004), pp. 1733-1777. doi:10.1016/j.cemconres.2004.05.034

(3) Cong, X. and Kirkpatrick, R. J.: “29Si MAS NMR study of the structure of calcium silicate hydrate”, Adv. Cem. Based Mater, vol. 3 (1996), pp. 144-146. doi:10.1016/S1065-7355(96)90046-2

(4) Brough, A. R.; Dobson, C. M.; Richardson, I. G., and Groves, G. W.: “In situ solid state NMR studies of Ca3SiO5: Hydration at room temperature and at elevated temperatures using 29Si enrichment”, Journal of Materials Science, vol. 29 (1994), pp. 3926-3940. doi:10.1007/BF00355951

(5) Cong, X. and Kirkpatrick, R. J.: “17O MAS NMR Investigation of the structure of the calcium silicate hydrate gel,” J. Am. Ceram. Soc., vol. 79 [6] (1996), pp. 1585-92. doi:10.1111/j.1151-2916.1996.tb08768.x

(6) Yu, P.; Kirkpatrick, R. J.; Poe, B.; McMillan, P. F., and Cong, X.: “Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and farinfrared spectroscopy,” J. Am. Ceram. Soc., vol. 82 [3] (1999), pp. 742-48.

(7) Powers, T. C.: “Physical properties of cement paste”, Fourth International Symposium on Chemistry of Cement, pp. 577-609. Washington, DC, National Bureau of Standards (1960).

(8) Feldman, R. F. and Sereda, P. J.: “A new model of hydrated cement and its practical applications”, Eng. J. Can., vol. 53 (1970), pp. 53-59.

(9) Wittmann, F. H.: “Trends in research on creep and shrinkage of concrete in cement production and use”. J. Skalny, New Hampshire, pp. 143-161, Engeneering Foundation-New York (1979).

(10) Jennings, H. M.: “A model for the microstructure of calcium silicate hydrate in cement paste”, Cem. Concr. Res. vol. 30 (2000), pp. 101-116. doi:10.1016/S0008-8846(99)00209-4

(11) Jennings, H. M.: “Refinements to colloid model of C-S-H in cement”, Cem. Concr. Res., vol. 38 (2008), pp. 275-289. doi:10.1016/j.cemconres.2007.10.006

(12) Allen, A. J., et al.: “Composition and density of nanoscale calcium silicate hydrate in cement”, Nature Materials, vol. 6 (2007), pp. 311-316. doi:10.1038/nmat1871 PMid:17384634

(13) Dolado, J. S., et al.: Journal of the American Ceramic Society, vol. 90, nº 12 (2007), pp. 3938-3942.

(14) Pellenq, R. J.-M. et al.: “A realistic molecular model of cement hydrates”; PNAS vol. 106, nº 38 (2009), pp. 16102-16107. doi:10.1073/pnas.0902180106 PMid:19805265    PMCid:2739865

(15) Pelleq, M., et al.: “Engineering the bonding scheme in C-S-H: the iono-covalent framework”, Cement and Concrete Research, vol. 38 (2008), pp. 159-174. doi:10.1016/j.cemconres.2007.09.026

(16) Manzano, H.; Dolado, J. S.; Ayuela, A.: “Elastic properties of the main species present in Portland cement pastes”, Acta Materialia, vol. 57, nº 5 (2009), pp. 1666-1674. doi:10.1016/j.actamat.2008.12.007

(17) Shahsavari, R., et al.: “First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of Tobermorite and Jennite”, Journal of the American Ceramic Society, vol. 92, nº10 (2009), pp. 2323-2330. doi:10.1111/j.1551-2916.2009.03199.x

(18) Gmira, A., et al.: “Microscopic physical basis of the poromechanical behavior of cement-based materials”, Materials and Structures, vol. 37 (2004), pp. 3-14. doi:10.1007/BF02481622

(19) Kalinichev, A. G.; Wang, J. and Kirkpatrick, R. J.: “Molecular dynamics modeling of the structure, dynamics and energetics of mineral-water interfaces: Application to cement materials”, Cement and Concrete Research, vol. 37 (2007), pp. 337-347. doi:10.1016/j.cemconres.2006.07.004

(20) Richardson, I.G.: “The calcium silicate hydrates”, Cem. Concr. Res., vol. 38 (2008), pp. 137-158. doi:10.1016/j.cemconres.2007.11.005 doi:10.1016/j.cemconres.2007.11.005

(21) Morales-Flórez, V., et al. The Cluster Model: “A simulation of the Aerogel Structure as a Hierarchically-Ordered Arrangement of Randomly Packed Spheres”. Journal of Sol-Gel Science and Technology, vol. 35 (2005), pp. 203-210. doi:10.1007/s10971-005-2363-4

(22) Morales-Flórez, V. and Brunet, F.: “Structural models of random packing of spheres extended to bricks: Simulation of the nanoporous Calcium-Silicate-Hydrates”, Molecular Simulation, vol. 35, nº 12-13 (2009), pp. 1001-1006. doi:10.1080/08927020903033117

(23) Constantinedes, G.; Ulm, Franz-Josef: “The nanogranular nature of C-S-H”, Journal of the Mechanics and Physics of Solids, vol. 55 (2007), pp. 64-90.

(24) Allen, A. and Thomas, J. J.: “Analysis of cement paste and C-S-H gel by small-angle neutron scattering”, Cement and Concrete Research, vol. 37 (2007), pp. 319-324. doi:10.1016/j.cemconres.2006.09.002

(25) Thomas, J. J.; Chen, J. J.; Allen, A. J. and Jennings, H. M.: “Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes”; Cem. Concr. Res., vol. 34 (2004), pp. 2297-2307. doi:10.1016/j.cemconres.2004.04.007

(26) Thomas, Jeffrey J.; Jennings, Hamlin M., and Allen, Andrew J.: “The Surface Area of Hardened Cement Paste as Measured by Various Techniques”, Concrete Science and Engineering, vol. 1 (1999), pp. 45-64.

(27) Tennis, P. D. and Jennings, H. M.: “A model of two types of calcium silicate hydrate in the microstructure of Portland cement pastes”, Cem. Concr. Res., vol. 30 (2000), pp. 855-863. doi:10.1016/S0008-8846(00)00257-X

(28) Garci Juenger, M. C. and Jennings, H. M: “The use of nitrogen adsorption to asses the microstructure of cement paste”, Cem. Concr. Res., vol. 31 (2001), pp. 883-892. doi:10.1016/S0008-8846(01)00493-8

(29) Manzano, H.: “Atomistic Simulation studies of The Cement Paste Components”, Thesis; University of the Basque Country UPV/EHU (2009).

(30) Constantinides, G. and Ulm, F.-J.: “The nanogranular nature of C-S-H”, J. Mech. Phys. Sol., vol. 55 (2007), pp. 64-90. doi:10.1016/j.jmps.2006.06.003

(31) Kröner, E.: Statistical continuum mechanics, Springer-Verla (1972).

Descargas

Publicado

2010-06-30

Cómo citar

González-Teresa, R., Morales-Florez, V., Manzano, H., & Dolado, J. S. (2010). Modelos estructurales del empaquetamiento aleatorio de partículas esféricas de Tobermorita: una aproximación computacional sencilla. Materiales De Construcción, 60(298), 7–15. https://doi.org/10.3989/mc.2010.57010

Número

Sección

Artículos