Polypropylene fiber reinforced concrete improved by using silica fume and acrylic emulsion polymer

Authors

DOI:

https://doi.org/10.3989/mc.2022.05121

Keywords:

Concrete, Fly ash, Blast furnace slag, Silica fume, Fiber reinforcement

Abstract


The current study aims at exploring the beneficial effect of silica fume (SF) and acrylic emulsion polymer (PR) on the enhanced properties of polypropylene fiber reinforced concrete (FRC) with the supplementary cementitious binder comprised of the Portland cement, slag, silica fume and fly ash. The compressive strength and impact-abrasion resistance were used for the estimation of engineering properties while the water absorption performance, surface electricity resistance, and rapid chloride penetration resistance were used for estimation of durability. Experimental results showed that a sole addition of SF increased the compressive strengths but decreased the abrasion-impact resistances of modified FRCs, which was just opposite to the influence of a sole addition of PR. A sole addition of either the SF or PR could moderately improve the durability of modified FRCs, respectively. However, due to the beneficial effect of the complementary interaction between SF and the optimal amount of PR, the mechanical properties and durability of modified FRCs seemed to become significantly improved.

Downloads

Download data is not yet available.

References

Gutowski Timothy, G.; Sahni, S.; Allwood Julian, M.; Ashby Michael, F.; Worrell, E. (2013) The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand. Philos. Trans. R. Soc. London, Ser. A. 371 [1986], 20120003.

Talaei, A.; Pier, D.; Iyer, A. V.; Ahiduzzaman, M.; Kumar, A. (2019) Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry. Energy. 170, 1051-1066.

Rust, D.; Rathbone, R.; Mahboub Kamyar, C.; Robl, T. (2012) Formulating low-energy cement products. J. Mater. Civ. Eng. 24 [9], 1125-1131.

Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. (2008) Sustainable development and climate change initiatives. Cem. Concr. Res. 38 [2], 115-127.

Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. (2011) Advances in alternative cementitious binders. Cem. Concr. Res. 41 [12], 1232-1243.

Pal Kaur, N.; Kumar Shah, J.; Majhi, S.; Mukherjee, A. (2019) Healing and simultaneous ultrasonic monitoring of cracks in concrete. Mater. Today Commun. 18, 87-99.

Lang, L.; Zhu, Z.; Zhang, X.; Qiu, H.; Zhou, C. (2019) Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts. Constr. Build. Mater. 199, 321-334.

Marí, A.; Torres, L.; Oller, E.; Barris, C. (2019) Performance-based slenderness limits for deformations and crack control of reinforced concrete flexural members. Eng. Struct. 187, 267-279.

Farnam, S.M.; Rezaie, F. (2019) Simulation of crack propagation in prestressed concrete sleepers by fracture mechanics. Eng. Fail. Anal. 96, 109-117.

Murray, C.D.; Diaz-Arancibia, M.; Okumus, P.; Floyd, R.W. (2019) Destructive testing and computer modeling of a scale prestressed concrete I-girder bridge. Eng. Struct. 183, 195-205.

Yoo, D.-Y.; Banthia, N. (2019) Impact resistance of fiber-reinforced concrete - A review. Cem. Concr. Compos. 104, 103389.

Bustos, A.; Moreno, E.; González, F.; Cobo, A. (2020) Influence of the addition of carbon fibers on the properties of hydraulic lime mortars: comparison with glass and basalt fibers. Mater. Construcc. 70 [340], e229.

Alhozaimy, A.M.; Soroushian, P.; Mirza, F. (1996) Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cem. Concr. Compos. 18 [2], 85-92.

Reis, J.M.L. (2006) Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Constr. Build. Mater. 20 [9], 673-678.

Qin, Y.; Zhang, X.; Chai, J.; Xu, Z.; Li, S. (2019) Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. Constr. Build. Mater. 194, 216-225.

Saje, D.; Bandelj, B.; Šušteršič, J.; Lopatič, J.; Saje, F. (2011) Shrinkage of polypropylene fiber-reinforced high-performance concrete. J. Mater. Civ. Eng. 23 [7], 941-952.

Saeedian, A.; Dehestani, M.; Asadollahi, S.; Vaseghi Amiri, J. (2017) Effect of specimen size on the compressive behavior of self-consolidating concrete containing polypropylene fibers. J. Mater. Civ. Eng. 29 [11], 04017208.

Ríos José, D.; Cifuentes, H.; Leiva, C.; García, C.; Alba María, D. (2018) Behavior of high-strength polypropylene fiber-reinforced self-compacting concrete exposed to high temperatures. J. Mater. Civ. Eng. 30 [11], 04018271.

Pakravan, H.R.; Latifi, M.; Jamshidi, M. (2017) Hybrid short fiber reinforcement system in concrete: A review. Constr. Build. Mater. 142, 280-294.

Siva Chidambaram, R.; Agarwal, P. (2015) Seismic behavior of hybrid fiber reinforced cementitious composite beam-column joints. Mater. Des. 86, 771-781.

Leung, H.Y.; Balendran, R.V. (2003) Properties of fresh polypropylene fibre reinforced concrete under the influence of pozzolans. J. Civ. Eng. Manage. 9 [4], 271-279.

ASTM (2018) Standard specification for concrete aggregates. ASTM C33. West Conshohocken, PA.

ASTM (2015) Standard test method for slump of hydraulic-cement concrete. ASTM C143. West Conshohocken, PA.

ASTM (2018) Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39. West Conshohocken, PA.

ASTM (2013) Standard test method for density, absorption, and voids in hardened concrete. ASTM C642. West Conshohocken, PA.

ASTM (2019) Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM C1202. West Conshohocken, PA.

Morin, V.; Moevus, M.; Dubois-Brugger, I.; Gartner, E. (2011) Effect of polymer modification of the paste-aggregate interface on the mechanical properties of concretes. Cem. Concr. Res. 41 [5], 459-466.

Zhang, Y.; Yan, L.; Wang, S.; Xu, M. (2019) Impact of twisting high-performance polyethylene fibre bundle reinforcements on the mechanical characteristics of high-strength concrete. Mater. Construcc. 69 [334], e184.

Ghosh, P.; Tran, Q. (2015) Correlation between bulk and surface resistivity of concrete. Int. J. Concr. Struct. Mater. 9 [1], 119-132.

FDOT (2004) Florida method of test for concrete resistivity as an electrical indicator of its permeability. Standard FM5-578. Florida Department of Transportation.

Wee, T.H.; Suryavanshi, A.K.; Tin, S.S. (2000) Evaluation of rapid chloride permeability test (RCPT) Results for concrete containing mineral admixtures. ACI Mater. J. 97 [2], 221-232.

Published

2022-02-23

How to Cite

Nguyen, H.-A. ., Chang, T.-P. ., Chen, C.-T. ., Wun, J.-L. ., & Shih, J.-Y. . (2022). Polypropylene fiber reinforced concrete improved by using silica fume and acrylic emulsion polymer. Materiales De Construcción, 72(345), e269. https://doi.org/10.3989/mc.2022.05121

Issue

Section

Research Articles

Funding data

National Taiwan University of Science and Technology
Grant numbers 103-2221-E-011-078-MY3;107-2221-E-011-073

Ministry of Science and Technology, Taiwan
Grant numbers 103-2221-E-011-078-MY3;107-2221-E-011-073

National Foundation for Science and Technology Development
Grant numbers 107.99-2018.301