Hormigón reforzado con fibra de polipropileno mejorado mediante el uso de humo de sílice y polímero de emulsión acrílica

Autores/as

DOI:

https://doi.org/10.3989/mc.2022.05121

Palabras clave:

Hormigón, Cenizas volantes, Escoria de alto horno, Humo de sílice, Refuerzo de fibra

Resumen


El estudio tiene como objetivo explorar el efecto beneficioso del humo de sílice (SF) y el polímero de emulsión acrílica (PR) en la mejora de las propiedades del hormigón reforzado con fibra de polipropileno (FRC) y formado por cemento Portland, escoria, humo de sílice y cenizas volantes. La propiedades ingenieriles se evaluaron mediante la caracterización de la resistencia a la compresión y a la abrasión, y las propiedades durables mediante la caracterización de la absorción de agua, la resistencia eléctrica superficial y la resistencia a la penetración rápida del cloruros. Los resultados experimentales mostraron que la adición de SF aumentó la resistencia a la compresión, pero disminuyó la resistencia al impacto-abrasión del FRC modificado, resultado opuesto a lo ocurrido con la adición de PR. La adición única, sea de SF o PR, podría mejorar moderadamente la durabilidad. Sin embargo, debido a la interacción entre SF y PR, tanto las propiedades mecánicas como la durabilidad del FRC modificado parecieron mejorar significativamente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Gutowski Timothy, G.; Sahni, S.; Allwood Julian, M.; Ashby Michael, F.; Worrell, E. (2013) The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand. Philos. Trans. R. Soc. London, Ser. A. 371 [1986], 20120003. https://doi.org/10.1098/rsta.2012.0003 PMid:23359744

Talaei, A.; Pier, D.; Iyer, A. V.; Ahiduzzaman, M.; Kumar, A. (2019) Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry. Energy. 170, 1051-1066. https://doi.org/10.1016/j.energy.2018.12.088

Rust, D.; Rathbone, R.; Mahboub Kamyar, C.; Robl, T. (2012) Formulating low-energy cement products. J. Mater. Civ. Eng. 24 [9], 1125-1131. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000456

Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. (2008) Sustainable development and climate change initiatives. Cem. Concr. Res. 38 [2], 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008

Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. (2011) Advances in alternative cementitious binders. Cem. Concr. Res. 41 [12], 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012

Pal Kaur, N.; Kumar Shah, J.; Majhi, S.; Mukherjee, A. (2019) Healing and simultaneous ultrasonic monitoring of cracks in concrete. Mater. Today Commun. 18, 87-99. https://doi.org/10.1016/j.mtcomm.2018.10.022

Lang, L.; Zhu, Z.; Zhang, X.; Qiu, H.; Zhou, C. (2019) Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts. Constr. Build. Mater. 199, 321-334. https://doi.org/10.1016/j.conbuildmat.2018.12.029

Marí, A.; Torres, L.; Oller, E.; Barris, C. (2019) Performance-based slenderness limits for deformations and crack control of reinforced concrete flexural members. Eng. Struct. 187, 267-279. https://doi.org/10.1016/j.engstruct.2019.02.045

Farnam, S.M.; Rezaie, F. (2019) Simulation of crack propagation in prestressed concrete sleepers by fracture mechanics. Eng. Fail. Anal. 96, 109-117. https://doi.org/10.1016/j.engfailanal.2018.09.012

Murray, C.D.; Diaz-Arancibia, M.; Okumus, P.; Floyd, R.W. (2019) Destructive testing and computer modeling of a scale prestressed concrete I-girder bridge. Eng. Struct. 183, 195-205. https://doi.org/10.1016/j.engstruct.2019.01.018

Yoo, D.-Y.; Banthia, N. (2019) Impact resistance of fiber-reinforced concrete - A review. Cem. Concr. Compos. 104, 103389. https://doi.org/10.1016/j.cemconcomp.2019.103389

Bustos, A.; Moreno, E.; González, F.; Cobo, A. (2020) Influence of the addition of carbon fibers on the properties of hydraulic lime mortars: comparison with glass and basalt fibers. Mater. Construcc. 70 [340], e229. https://doi.org/10.3989/mc.2020.00120

Alhozaimy, A.M.; Soroushian, P.; Mirza, F. (1996) Mechanical properties of polypropylene fiber reinforced concrete and the effects of pozzolanic materials. Cem. Concr. Compos. 18 [2], 85-92. https://doi.org/10.1016/0958-9465(95)00003-8

Reis, J.M.L. (2006) Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Constr. Build. Mater. 20 [9], 673-678. https://doi.org/10.1016/j.conbuildmat.2005.02.008

Qin, Y.; Zhang, X.; Chai, J.; Xu, Z.; Li, S. (2019) Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. Constr. Build. Mater. 194, 216-225. https://doi.org/10.1016/j.conbuildmat.2018.11.042

Saje, D.; Bandelj, B.; Šušteršič, J.; Lopatič, J.; Saje, F. (2011) Shrinkage of polypropylene fiber-reinforced high-performance concrete. J. Mater. Civ. Eng. 23 [7], 941-952. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000258

Saeedian, A.; Dehestani, M.; Asadollahi, S.; Vaseghi Amiri, J. (2017) Effect of specimen size on the compressive behavior of self-consolidating concrete containing polypropylene fibers. J. Mater. Civ. Eng. 29 [11], 04017208. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002067

Ríos José, D.; Cifuentes, H.; Leiva, C.; García, C.; Alba María, D. (2018) Behavior of high-strength polypropylene fiber-reinforced self-compacting concrete exposed to high temperatures. J. Mater. Civ. Eng. 30 [11], 04018271. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002491

Pakravan, H.R.; Latifi, M.; Jamshidi, M. (2017) Hybrid short fiber reinforcement system in concrete: A review. Constr. Build. Mater. 142, 280-294. https://doi.org/10.1016/j.conbuildmat.2017.03.059

Siva Chidambaram, R.; Agarwal, P. (2015) Seismic behavior of hybrid fiber reinforced cementitious composite beam-column joints. Mater. Des. 86, 771-781. https://doi.org/10.1016/j.matdes.2015.07.164

Leung, H.Y.; Balendran, R.V. (2003) Properties of fresh polypropylene fibre reinforced concrete under the influence of pozzolans. J. Civ. Eng. Manage. 9 [4], 271-279. https://doi.org/10.1080/13923730.2003.10531339

ASTM (2018) Standard specification for concrete aggregates. ASTM C33. West Conshohocken, PA.

ASTM (2015) Standard test method for slump of hydraulic-cement concrete. ASTM C143. West Conshohocken, PA.

ASTM (2018) Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39. West Conshohocken, PA.

ASTM (2013) Standard test method for density, absorption, and voids in hardened concrete. ASTM C642. West Conshohocken, PA.

ASTM (2019) Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. ASTM C1202. West Conshohocken, PA.

Morin, V.; Moevus, M.; Dubois-Brugger, I.; Gartner, E. (2011) Effect of polymer modification of the paste-aggregate interface on the mechanical properties of concretes. Cem. Concr. Res. 41 [5], 459-466. https://doi.org/10.1016/j.cemconres.2011.01.006

Zhang, Y.; Yan, L.; Wang, S.; Xu, M. (2019) Impact of twisting high-performance polyethylene fibre bundle reinforcements on the mechanical characteristics of high-strength concrete. Mater. Construcc. 69 [334], e184. https://doi.org/10.3989/mc.2019.01418

Ghosh, P.; Tran, Q. (2015) Correlation between bulk and surface resistivity of concrete. Int. J. Concr. Struct. Mater. 9 [1], 119-132. https://doi.org/10.1007/s40069-014-0094-z

FDOT (2004) Florida method of test for concrete resistivity as an electrical indicator of its permeability. Standard FM5-578. Florida Department of Transportation.

Wee, T.H.; Suryavanshi, A.K.; Tin, S.S. (2000) Evaluation of rapid chloride permeability test (RCPT) Results for concrete containing mineral admixtures. ACI Mater. J. 97 [2], 221-232. https://doi.org/10.14359/827

Publicado

2022-02-23

Cómo citar

Nguyen, H.-A. ., Chang, T.-P. ., Chen, C.-T. ., Wun, J.-L. ., & Shih, J.-Y. . (2022). Hormigón reforzado con fibra de polipropileno mejorado mediante el uso de humo de sílice y polímero de emulsión acrílica. Materiales De Construcción, 72(345), e269. https://doi.org/10.3989/mc.2022.05121

Número

Sección

Artículos

Datos de los fondos

National Taiwan University of Science and Technology
Números de la subvención 103-2221-E-011-078-MY3;107-2221-E-011-073

Ministry of Science and Technology, Taiwan
Números de la subvención 103-2221-E-011-078-MY3;107-2221-E-011-073

National Foundation for Science and Technology Development
Números de la subvención 107.99-2018.301