Investigations on alkali-silica reaction products using Raman spectroscopy
DOI:
https://doi.org/10.3989/mc.2022.15621Keywords:
Alkali-silica reaction (ASR), Alkali-silica reaction gel (ASR gel), Raman spectroscopy, 29Si NMR spectroscopy, ConcreteAbstract
The alkali-silica reaction (ASR) remains a major challenge regarding the durability of concrete structures. The reaction mechanism is not sufficiently understood owing to the difficulty in characterizing the structure of the alkali-silica reaction gel (ASR gel) in concrete. Synthetic ASR gels with different compositions, i.e. Na/Si and Ca/Si molar ratios, were synthesized and analysed by Raman spectroscopy and, for comparison, 29Si NMR spectroscopy. The results show that higher Na/Si ratios increase the number of non-bridging oxygens in the gel structure, thus leading to a decrease in the degree of cross-linking. With increasing calcium content of the sodium-calcium silica gel, the structure tends towards that of C-S-H phases. Raman spectroscopy is a promising method to characterise synthetic ASR gels and provide new information on the effect of alkalis on the gel structure.
Downloads
References
Leemann, A. (2017) Raman microscopy of alkali-silica reaction (ASR) products formed in concrete. Cem. Concr. Res. 102, 41-47. https://doi.org/10.1016/j.cemconres.2017.08.014
Leemann, A.; Shi, Z.; Lindgård, J. (2020) Characterization of amorphous and crystalline ASR products formed in concrete aggregates. Cem. Concr. Res. 137, 106190. https://doi.org/10.1016/j.cemconres.2020.106190
Dähn, R.; Arakcheeva, A.; Schaub, P.; Pattison, P.; Chapuis, G.; Grolimund, D.; Wieland, E.; Leemann, A. (2016) Application of micro X-ray diffraction to investigate the reaction products formed by the alkali-silica reaction in concrete structures. Cem. Concr. Res. 79, 49-56. https://doi.org/10.1016/j.cemconres.2015.07.012
Geng, G.; Shi, Z.; Leemann, A.; Borca, C.; Huthwelker, T.; Glazyrin, K.; Pekov, I.V.; Churakov, S.; Lothenbach, B.; Dähn, R.; Wieland, E. (2020) Atomistic structure of alkali-silica reaction products refined from X-ray diffraction and micro X-ray absorption data. Cem. Concr. Res. 129, 105958. https://doi.org/10.1016/j.cemconres.2019.105958
Shi, Z.; Geng, G.; Leemann, A.; Lothenbach, B. (2019) Synthesis, characterization, and water uptake property of alkali-silica reaction products. Cem. Concr. Res. 121, 58-71. https://doi.org/10.1016/j.cemconres.2019.04.009
Shi, Z.; Leemann, A.; Rentsch, D.; Lothenbach, B. (2020) Synthesis of alkali-silica reaction product structurally identical to that formed in field concrete. Mater. Des. 190, 108562. https://doi.org/10.1016/j.matdes.2020.108562
Leemann, A.; Shi, Z.; Wyrzykowski, M.; Winnefeld, F. (2020) Moisture stability of crystalline alkali-silica reaction products formed in concrete exposed to natural environment. Mater. Des. [195], 109066. https://doi.org/10.1016/j.matdes.2020.109066
Hou, X.; Kirkpatrick, R.J.; Struble, L.J.; Monteiro, P.J.M. (2005) Structural investigations of alkali silicate gels. J. Am. Ceram. Soc. 88 [4], 943-949. https://doi.org/10.1111/j.1551-2916.2005.00145.x
Hou, X.; Struble, L.J.; Kirkpatrick, R.J. (2004) Kanemite as a model for asr gel. 12. International Conference on Alkali-Aggregate Reaction in Concrete. Beijing, China, 115-123.
Kirkpatrick, R.J.; Kalinichev, A.G.; Hou, X.; Struble, L. (2005) Experimental and molecular dynamics modeling studies of interlayer swelling: water incorporation in kanemite and ASR gel. Mater. Struct. 38, 449-458. https://doi.org/10.1007/BF02482141
Mansfeld, T. (2008) The swelling behaviour of alkali silicate gels considering their composition. Bauhaus-Universität Weimar, Dissertation.
Balachandran, C.; Muñoz, J.F.; Arnold, T. (2017) Characterization of alkali silica reaction gels using Raman spectroscopy. Cem. Concr. Res. 92, 66-74. https://doi.org/10.1016/j.cemconres.2016.11.018
Ling, T.C.; Balachandran, C.; Muñoz, J.F.; Youtcheff, J. (2018) Chemical evolution of alkali-silicate reaction (ASR) products: a Raman spectroscopic investigation. Mater. Struct. 51, 23. https://link.springer.com/article/10.1617%2Fs11527-018-1151-x. https://doi.org/10.1617/s11527-018-1151-x
Drozdovskiy, I.; Ligeza, G.; Jahoda, P; Franke, M.; Lennert, P.; Vodnik, P.; Payler, S.J.; Kaliwoda, M.; Pozzobon, R.; Massironi, M.; Turchi, L.; Bessone, L.; Sauro, F. (2020) The PANGAEA Mineralogical Database. Data Br. 31, 105985. https://doi.org/10.1016/j.dib.2020.105985
PMid:32715037 PMCid:PMC7371743
Black, L. (2009) Raman spectroscopy of cementitious materials. In Spectrosc. Prop. Inorg. Organomet. Compd., J. Yarwood; Douthwaite, R.; Duckett, S. B.
Garbev, K.; Stemmermann, P.; Black, L.; Brenn, C.; Yarwood, J.; Gasharova, B. (2007) Structural features of C-S-H(I) and its carbonation in air-A Raman spectroscopic study. Part I: fresh phases. J. Am. Ceram. Soc. 90, 900-907. https://doi.org/10.1111/j.1551-2916.2006.01428.x
McMillan, P. (1984) Structural studies of silicate glasses and melts - applications and limitations of Raman spectroscopy. Am. Min. 69, 622-644.
Higl, J.; Köhler, M.; Lindén, M. (2016) Confocal Raman microscopy as a non-destructive tool to study microstructure of hydrating cementitious materials. Cem. Concr. Res. 88, 136-143. https://doi.org/10.1016/j.cemconres.2016.07.005
Black, L.; Breen, C.; Yarwood, J.; Garbev, K.; Stemmermann, P.; Gasharova, B. (2007) Structural features of C-S-H(I) and its carbonation in air-A Raman spectroscopic study. Part II: carbonated phases. J. Am. Ceram. Soc. 90, 908-917. https://doi.org/10.1111/j.1551-2916.2006.01429.x
Hurai, V.; Huraiová, M.; Slobodník, M.; Thomas, R. (2015) Geofluids, 1st Edition, Elsevier. https://doi.org/10.1016/B978-0-12-803241-1.00001-0
Ortaboy, S.; Li, J.; Geng, G; Myers, R.J.; Monteiro, P.J.M.; Maboudian, R.; Carraro, C. (2017) Effects of CO2 and temperature on the structure and chemistry of C-(A-)S-H investigated by Raman spectroscopy. RSC Adv. 7 [77], 48925-48933. https://doi.org/10.1039/C7RA07266J
Tambelli, C.E.; Schneider, J.F.; Hasparyk, N.P.; Monteiro, P.J.M. (2006) Study of the structure of alkali-silica reaction gel by high-resolution NMR spectroscopy. J. Non. Cryst. Solids. 353 [32-35], 3429-3436. https://doi.org/10.1016/j.jnoncrysol.2006.03.112
Walkley, B.; Provis, J.L. (2019) Solid-state nuclear magnetic resonance spectroscopy of cements. Mater. Today Adv. 1, 100007. https://doi.org/10.1016/j.mtadv.2019.100007
Dedecek, J.; Balgová, V.; Pashkova, V.; Klein, P.; Wichterlová, B. (2012) Synthesis of ZSM-5 Zeolites with defined distribution of al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution. Chem. Mater. 24 [16], 3231-3239. https://doi.org/10.1021/cm301629a
Huang, Y.; Jiang, Z.; Schwieger, W. (1998) A vibrational study of kanemite. Micropo. Mesopo. Mat. 26, 215-219. https://doi.org/10.1016/S1387-1811(98)00270-4
Kalampounias, A.G. (2011) IR and Raman spectroscopic studies of sol-gel derived alkaline-earth silicate glasses. Bull. Mater. Sci. 34, 299-303. https://doi.org/10.1007/s12034-011-0064-x
Irbe, L.; Beddoe, R.E.; Heinz, D. (2019) The role of aluminium in C-A-S-H during sulfate attack on concrete. Cem. Concr. Res. 116, 71-80. https://doi.org/10.1016/j.cemconres.2018.11.012
Cong, X.D.; Kirkpatrick, R.J.; Diamond, S. (1993) 29Si MAS NMR spectroscopic investigation of alkali silica reaction product gels. Cem. Concr. Res. 23 [4], 811-823. https://doi.org/10.1016/0008-8846(93)90035-8
Leemann, A.; Le Saout, G.; Winnefeld, F.; Rentsch, D.; Lothenbach, B. (2011) Alkali-silica reaction: the influence of calcium on silica dissolution and the formation of reaction products. J. Am. Ceram. Soc. 94 [4], 1243-1249. https://doi.org/10.1111/j.1551-2916.2010.04202.x
Hou, X.; Struble, L.J.; Kirkpatrick, R.J. (2004) Formation of ASR gel and the roles of C-S-H and portlandite. Cem. Concr. Res. 34 [9], 1683-1696. https://doi.org/10.1016/j.cemconres.2004.03.026
Lothenbach, B.; Nied, D.; L'Hôpital, E.; Achiedo, G.; Dauzéres, A. (2015) Magnesium and calcium silicate hydrates. Cem. Concr. Res. 77, 60-68. https://doi.org/10.1016/j.cemconres.2015.06.007
Myers, R.J.; Bernal, S.A.; Gehman, J.D.; van Deventer, J. S.J.; Provis, J.L. (2015) The role of Al in cross-linking of alkali-activated slag cements. J. Am. Ceram. Soc. 98 [3], 996-1004. https://doi.org/10.1111/jace.13360
Sevelsted, T.F; Skibsted, J. (2015) Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 71, 56-65. https://doi.org/10.1016/j.cemconres.2015.01.019
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.