Investigaciones sobre productos de reacción álcali-sílice mediante espectroscopia Raman

Autores/as

DOI:

https://doi.org/10.3989/mc.2022.15621

Palabras clave:

Reacción álcali-sílice (RAS), Gel de reacción álcali-sílice (gel RAS), Espectroscopía Raman, Espectroscopía de RMN de 29Si, Hormigón

Resumen


La reacción álcali-sílice (RAS) sigue siendo un reto importante para la durabilidad de las estructuras de hormigón. El mecanismo de reacción de la RAS aún no está suficientemente aclarado debido a la dificultad para caracterizar la estructura del gel de reacción álcali-sílice (gel RAS) en el hormigón. Se sintetizaron geles de RAS con diferentes composiciones, es decir, con proporciones molares de Na/Si y Ca/Si, y se analizaron mediante espectroscopia Raman y se validaron comparando los resultados con mediciones espectroscópicas de RMN de 29Si. Los resultados muestran que las relaciones Na/Si más elevadas aumentan el número de oxígenos no puente en la estructura del gel, lo que conduce a una disminución del grado de reticulación. Al aumentar el contenido de calcio del gel de sílice sódico-cálcico, la estructura se asemeja más a la de las fases C-S-H. La espectroscopia Raman es un método prometedor para caracterizar los geles sintéticos de RAS y proporciona nueva información sobre el efecto de los álcalis en la estructura del gel.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Leemann, A. (2017) Raman microscopy of alkali-silica reaction (ASR) products formed in concrete. Cem. Concr. Res. 102, 41-47. https://doi.org/10.1016/j.cemconres.2017.08.014

Leemann, A.; Shi, Z.; Lindgård, J. (2020) Characterization of amorphous and crystalline ASR products formed in concrete aggregates. Cem. Concr. Res. 137, 106190. https://doi.org/10.1016/j.cemconres.2020.106190

Dähn, R.; Arakcheeva, A.; Schaub, P.; Pattison, P.; Chapuis, G.; Grolimund, D.; Wieland, E.; Leemann, A. (2016) Application of micro X-ray diffraction to investigate the reaction products formed by the alkali-silica reaction in concrete structures. Cem. Concr. Res. 79, 49-56. https://doi.org/10.1016/j.cemconres.2015.07.012

Geng, G.; Shi, Z.; Leemann, A.; Borca, C.; Huthwelker, T.; Glazyrin, K.; Pekov, I.V.; Churakov, S.; Lothenbach, B.; Dähn, R.; Wieland, E. (2020) Atomistic structure of alkali-silica reaction products refined from X-ray diffraction and micro X-ray absorption data. Cem. Concr. Res. 129, 105958. https://doi.org/10.1016/j.cemconres.2019.105958

Shi, Z.; Geng, G.; Leemann, A.; Lothenbach, B. (2019) Synthesis, characterization, and water uptake property of alkali-silica reaction products. Cem. Concr. Res. 121, 58-71. https://doi.org/10.1016/j.cemconres.2019.04.009

Shi, Z.; Leemann, A.; Rentsch, D.; Lothenbach, B. (2020) Synthesis of alkali-silica reaction product structurally identical to that formed in field concrete. Mater. Des. 190, 108562. https://doi.org/10.1016/j.matdes.2020.108562

Leemann, A.; Shi, Z.; Wyrzykowski, M.; Winnefeld, F. (2020) Moisture stability of crystalline alkali-silica reaction products formed in concrete exposed to natural environment. Mater. Des. [195], 109066. https://doi.org/10.1016/j.matdes.2020.109066

Hou, X.; Kirkpatrick, R.J.; Struble, L.J.; Monteiro, P.J.M. (2005) Structural investigations of alkali silicate gels. J. Am. Ceram. Soc. 88 [4], 943-949. https://doi.org/10.1111/j.1551-2916.2005.00145.x

Hou, X.; Struble, L.J.; Kirkpatrick, R.J. (2004) Kanemite as a model for asr gel. 12. International Conference on Alkali-Aggregate Reaction in Concrete. Beijing, China, 115-123.

Kirkpatrick, R.J.; Kalinichev, A.G.; Hou, X.; Struble, L. (2005) Experimental and molecular dynamics modeling studies of interlayer swelling: water incorporation in kanemite and ASR gel. Mater. Struct. 38, 449-458. https://doi.org/10.1007/BF02482141

Mansfeld, T. (2008) The swelling behaviour of alkali silicate gels considering their composition. Bauhaus-Universität Weimar, Dissertation.

Balachandran, C.; Muñoz, J.F.; Arnold, T. (2017) Characterization of alkali silica reaction gels using Raman spectroscopy. Cem. Concr. Res. 92, 66-74. https://doi.org/10.1016/j.cemconres.2016.11.018

Ling, T.C.; Balachandran, C.; Muñoz, J.F.; Youtcheff, J. (2018) Chemical evolution of alkali-silicate reaction (ASR) products: a Raman spectroscopic investigation. Mater. Struct. 51, 23. https://link.springer.com/article/10.1617%2Fs11527-018-1151-x. https://doi.org/10.1617/s11527-018-1151-x

Drozdovskiy, I.; Ligeza, G.; Jahoda, P; Franke, M.; Lennert, P.; Vodnik, P.; Payler, S.J.; Kaliwoda, M.; Pozzobon, R.; Massironi, M.; Turchi, L.; Bessone, L.; Sauro, F. (2020) The PANGAEA Mineralogical Database. Data Br. 31, 105985. https://doi.org/10.1016/j.dib.2020.105985

PMid:32715037 PMCid:PMC7371743

Black, L. (2009) Raman spectroscopy of cementitious materials. In Spectrosc. Prop. Inorg. Organomet. Compd., J. Yarwood; Douthwaite, R.; Duckett, S. B.

Garbev, K.; Stemmermann, P.; Black, L.; Brenn, C.; Yarwood, J.; Gasharova, B. (2007) Structural features of C-S-H(I) and its carbonation in air-A Raman spectroscopic study. Part I: fresh phases. J. Am. Ceram. Soc. 90, 900-907. https://doi.org/10.1111/j.1551-2916.2006.01428.x

McMillan, P. (1984) Structural studies of silicate glasses and melts - applications and limitations of Raman spectroscopy. Am. Min. 69, 622-644.

Higl, J.; Köhler, M.; Lindén, M. (2016) Confocal Raman microscopy as a non-destructive tool to study microstructure of hydrating cementitious materials. Cem. Concr. Res. 88, 136-143. https://doi.org/10.1016/j.cemconres.2016.07.005

Black, L.; Breen, C.; Yarwood, J.; Garbev, K.; Stemmermann, P.; Gasharova, B. (2007) Structural features of C-S-H(I) and its carbonation in air-A Raman spectroscopic study. Part II: carbonated phases. J. Am. Ceram. Soc. 90, 908-917. https://doi.org/10.1111/j.1551-2916.2006.01429.x

Hurai, V.; Huraiová, M.; Slobodník, M.; Thomas, R. (2015) Geofluids, 1st Edition, Elsevier. https://doi.org/10.1016/B978-0-12-803241-1.00001-0

Ortaboy, S.; Li, J.; Geng, G; Myers, R.J.; Monteiro, P.J.M.; Maboudian, R.; Carraro, C. (2017) Effects of CO2 and temperature on the structure and chemistry of C-(A-)S-H investigated by Raman spectroscopy. RSC Adv. 7 [77], 48925-48933. https://doi.org/10.1039/C7RA07266J

Tambelli, C.E.; Schneider, J.F.; Hasparyk, N.P.; Monteiro, P.J.M. (2006) Study of the structure of alkali-silica reaction gel by high-resolution NMR spectroscopy. J. Non. Cryst. Solids. 353 [32-35], 3429-3436. https://doi.org/10.1016/j.jnoncrysol.2006.03.112

Walkley, B.; Provis, J.L. (2019) Solid-state nuclear magnetic resonance spectroscopy of cements. Mater. Today Adv. 1, 100007. https://doi.org/10.1016/j.mtadv.2019.100007

Dedecek, J.; Balgová, V.; Pashkova, V.; Klein, P.; Wichterlová, B. (2012) Synthesis of ZSM-5 Zeolites with defined distribution of al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution. Chem. Mater. 24 [16], 3231-3239. https://doi.org/10.1021/cm301629a

Huang, Y.; Jiang, Z.; Schwieger, W. (1998) A vibrational study of kanemite. Micropo. Mesopo. Mat. 26, 215-219. https://doi.org/10.1016/S1387-1811(98)00270-4

Kalampounias, A.G. (2011) IR and Raman spectroscopic studies of sol-gel derived alkaline-earth silicate glasses. Bull. Mater. Sci. 34, 299-303. https://doi.org/10.1007/s12034-011-0064-x

Irbe, L.; Beddoe, R.E.; Heinz, D. (2019) The role of aluminium in C-A-S-H during sulfate attack on concrete. Cem. Concr. Res. 116, 71-80. https://doi.org/10.1016/j.cemconres.2018.11.012

Cong, X.D.; Kirkpatrick, R.J.; Diamond, S. (1993) 29Si MAS NMR spectroscopic investigation of alkali silica reaction product gels. Cem. Concr. Res. 23 [4], 811-823. https://doi.org/10.1016/0008-8846(93)90035-8

Leemann, A.; Le Saout, G.; Winnefeld, F.; Rentsch, D.; Lothenbach, B. (2011) Alkali-silica reaction: the influence of calcium on silica dissolution and the formation of reaction products. J. Am. Ceram. Soc. 94 [4], 1243-1249. https://doi.org/10.1111/j.1551-2916.2010.04202.x

Hou, X.; Struble, L.J.; Kirkpatrick, R.J. (2004) Formation of ASR gel and the roles of C-S-H and portlandite. Cem. Concr. Res. 34 [9], 1683-1696. https://doi.org/10.1016/j.cemconres.2004.03.026

Lothenbach, B.; Nied, D.; L'Hôpital, E.; Achiedo, G.; Dauzéres, A. (2015) Magnesium and calcium silicate hydrates. Cem. Concr. Res. 77, 60-68. https://doi.org/10.1016/j.cemconres.2015.06.007

Myers, R.J.; Bernal, S.A.; Gehman, J.D.; van Deventer, J. S.J.; Provis, J.L. (2015) The role of Al in cross-linking of alkali-activated slag cements. J. Am. Ceram. Soc. 98 [3], 996-1004. https://doi.org/10.1111/jace.13360

Sevelsted, T.F; Skibsted, J. (2015) Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res. 71, 56-65. https://doi.org/10.1016/j.cemconres.2015.01.019

Publicado

2022-04-29

Cómo citar

Krüger, M. ., Thome, V. ., Hilbig, H. ., Kaliwoda, M. ., & Heinz, D. . (2022). Investigaciones sobre productos de reacción álcali-sílice mediante espectroscopia Raman. Materiales De Construcción, 72(346), e281. https://doi.org/10.3989/mc.2022.15621

Número

Sección

Artículos