Prediction of flexural fatigue life and failure probability of normal weight concrete
DOI:
https://doi.org/10.3989/mc.2022.03521Keywords:
Concrete, Fatigue, Flexural strength, Durability, Mechanical propertiesAbstract
Fatigue life has to be considered in the design of many concrete structures at various stress levels and stress ratios. Many flexural fatigue test results of plain normal-weight concrete are available in the literature and almost every set of test results provides different fatigue equations. It is necessary, though, to have a common fatigue equation to predict the design fatigue life of concrete structures under flexural load with reasonable accuracy. Therefore, a database of flexural fatigue test results was created for concrete with strengths ranging from 25 to 65 MPa; this database was used to derive new fatigue equations (Wöhler fatigue equation and S-N power relationship) for predicting the flexural fatigue life of normal-weight concrete. The concept of equivalent fatigue life was introduced to obtain a fatigue equation using the same stress ratio. A probabilistic analysis was also carried out to develop flexural fatigue equations that incorporate failure probabilities.
Downloads
References
Deng, P.; Matsumoto, T. (2018) Determination of dominant degradation mechanisms of RC bridge deck slabs under cyclic moving loads. Int. J. Fatigue. 112, 328-340. https://doi.org/10.1016/j.ijfatigue.2018.03.033
Paluri, Y.; Noolu, V.; Mudavath, H.; Pancharathi, R.K. (2021) Flexural fatigue behavior of steel fiber-reinforced reclaimed asphalt pavement-based concrete: an experimental study. Pract. Period. Struct. Des. Constr. 26 [1], 04020053. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000540
Singh, S.P.; Kaushik, S.K. (2003) Fatigue strength of steel fibre reinforced concrete in flexure. Cem. Concr. Compos. 25 [7], 779-786. https://doi.org/10.1016/S0958-9465(02)00102-6
Kesler, C.E. (1953) Effect of speed of testing on flexural fatigue strength of plain concrete. Highw. Res. Board Proc. 32, 251-258.
Singh, S.P.; Kaushik, S.K. (2001) Flexural fatigue analysis of steel fiber-reinforced concrete. ACI Mater. J. 98 [4], 306-312. https://doi.org/10.14359/10399
Oh, B.H. (1986) Fatigue analysis of plain concrete in flexure. J. Struct. Eng. 112 [2], 273-288. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(273)
Singh, S.P.; Mohammadi, Y.; Kaushik, S.K. (2005) Flexural fatigue analysis of steel fibrous concrete containing mixed fibers. ACI Mater. J. 102 [6], 438-444. https://doi.org/10.14359/14807
Shi, X.P.; Fwa, T.F.; Tan, S.A. (1993) Flexural fatigue strength of plain concrete. ACI Mater. J. 90 [5], 435-440. https://doi.org/10.14359/3872
Lee, M.K.; Barr, B.I.G. (2004) An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cem. Concr. Compos. 26 [4], 299-305. https://doi.org/10.1016/S0958-9465(02)00139-7
Murdock, J.W.; Kesler, C.E. (1958) Effect of range of stress on fatigue strength of plain concrete beams. ACI J. Proc. 55 [8], 221-231. https://doi.org/10.14359/11350
Zhang, J.; Stang, H.; Li, V.C. (1999) Fatigue life prediction of fiber reinforced concrete under flexural load. Int. J. Fatigue. 21 [10], 1033-1049. https://doi.org/10.1016/S0142-1123(99)00093-6
Tepfers, R.; Kutti, T. (1979) Fatigue strength of plain, ordinary, and lightweight concrete. ACI J. Proc. 76 [5], 635-652. https://doi.org/10.14359/6962
Holman, J.P. (2011) Experimental methods for engineers, 8th edition. McGraw-Hill, (2011).
Mohammadi, Y.; Kaushik, S.K. (2005) Flexural fatigue-life distributions of plain and fibrous concrete at various stress levels. J. Mater. Civ. Eng. 17 [6], 650-658. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(650)
Ang, A.H.S.; Tang, W.H. (2007) Probability concepts in engineering: emphasis on applications to civil and environmental engineering, 2nd ed. John Wiley and Sons Inc., New York, (2007).
Treybig, H.J.; Smith, P.; VonQuintus, H. (1977) Overlay design and reflection cracking analysis for rigid pavements -- Vol. 1 Development of new design criteria. Austin, TX United States 78746.
Wirsching, P.H.; Yao, J.T.P. (1982) Fatigue reliability: Introduction. J Struct Div. 108 [1], 3-23. https://doi.org/10.1061/JSDEAG.0005869
Koltsida, I.S.; Tomor, A.K.; Booth, C.A. (2018) Probability of fatigue failure in brick masonry under compressive loading. Int. J. Fatigue. 112, 233-239. https://doi.org/10.1016/j.ijfatigue.2018.03.023
Gumbel, E.J. (1958) Statistics of extremes. Columbia University Press, (1958). https://doi.org/10.7312/gumb92958
Oh, B.H. (1991) Fatigue-life distributions of concrete for various stress levels. ACI Mater. J. 88 [2], 122-128. https://doi.org/10.14359/1870
Sohel, K.M.A.; Al-Jabri, K.; Zhang, M.H.; Liew, J.Y.R. (2018) Flexural fatigue behavior of ultra-lightweight cement composite and high strength lightweight aggregate concrete. Constr. Build. Mater. 173, 90-100. https://doi.org/10.1016/j.conbuildmat.2018.03.276
Weibull, W, (1961) Fatigue testing and analysis of results. Oxford: Pergamon Press, (1961). https://doi.org/10.1016/B978-0-08-009397-0.50006-0
Correia, J.A.F.deO.; Pedrosa, B.A.S.; Raposo, P.C.; et al. (2017) Fatigue strength evaluation of resin-injected bolted connections using statistical analysis. Engineering. 3 [6], 795-805. https://doi.org/10.1016/j.eng.2017.12.001
Kaur, G.; Singh, S.P.; Kaushik, S.K. (2016) Mean and design fatigue lives of SFRC containing cement-based materials. Mag. Concr. Res. 68 [7], 325-338. https://doi.org/10.1680/macr.15.00128
Freudenthal, A.M.; Gumbel, E.J. (1956) Physical and statistical aspects of fatigue. Adv. Appl. Mech. 4, 117-158. https://doi.org/10.1016/S0065-2156(08)70372-7
Wirsching, P.H.; Yao, J.T.P. (1970) Statistical methods in structural fatigue. J. Struct. Div. ASCE. 96 [6], 1201-1219. https://doi.org/10.1061/JSDEAG.0002603
Arora, S.; Singh, S.P. (2016) Analysis of flexural fatigue failure of concrete made with 100% Coarse Recycled Concrete Aggregates. Constr. Build. Mater. 102, 782-791. https://doi.org/10.1016/j.conbuildmat.2015.10.098
Ramakrishnan, V.; Wu, G.Y.; Hosalli, G. (1989) Flexural fatigue strength, endurance limit, and impact strength of fiber reinforced concretes. Transp. Res. Rec. 1226, 17-24.
Johnston, C.D.; Zemp, R.W. (1991) Flexural fatigue performance of steel fiber reinforced concrete. Influence of fiber content, aspect ratio, and type. ACI Mater. J. 88 [4], 374-383. https://doi.org/10.14359/1875
ACI 215R-74. (1997) Considerations for design of concrete structures subjected to fatigue loading (Reapproved 1997). ACI Committee 215, American Concrete Institute, (1997).
Liu, F.; Zheng, W.; Li, L.; Feng, W.; Ning, G. (2013) Mechanical and fatigue performance of rubber concrete. Constr. Build. Mater. 47, 711-719. https://doi.org/10.1016/j.conbuildmat.2013.05.055
Harwalkar, A.; Awanti, S.S. (2017) Probability analysis of flexural fatigue data of high volume fly ash concrete. Inter. Conf. Highw. Pavem. Airfield Technol. 2017. 295-307. https://doi.org/10.1061/9780784480939.026
Tan, Y.; Zhou, C.; Zhou, J. (2020) Influence of the steel fiber content on the flexural fatigue behavior of recycled aggregate concrete. Adv. Civ. Eng. 2020, 8839271. https://doi.org/10.1155/2020/8839271
Zhang, B.; Phillips, D.V.; Wu, K. (1996) Effects of loading frequency and stress reversal on fatigue life of plain concrete. Mag. Concr. Res. 48 [177], 361-375. https://doi.org/10.1680/macr.1996.48.177.361
Lee, D.Y.; Klaiber, F.W.; Coleman, J.W. (1977) Fatigue behavior of air entrained concrete. Department of Civil Engineering, Iowa State University, Ames.
Thomas, T.L. (1979) The effects of air content, water-cement ratio, and aggregate type on the flexural fatigue strength of plain concrete. (Ph.D. thesis), Iowa State University (1979).
Hanumantharayagouda; Patil, A.S. (2013) Flexural fatigue studies for SFRC under compound loading for different stress ranges. Int. J. Recent. Technol. Eng. 2 [4], 2277-3878.
Mithun, B.M.; Narasimhan, M.C.; Nitendra, P.; Ravishankar, A.U. (2015) Flexural fatigue performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. Sel. Sci. Pap. - J. Civ. Eng. 10 [1], 7-18. https://doi.org/10.1515/sspjce-2015-0001
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Sultan Qaboos University
Grant numbers IG/ENG/CAED/18/01