Predicción de la vida a fatiga por flexión y la probabilidad de falla del hormigón de densidad convencional
DOI:
https://doi.org/10.3989/mc.2022.03521Palabras clave:
Hormigón, Fatiga, Resistencia a flexión, Durabilidad, Propiedades mecánicasResumen
La vida a fatiga debe ser considerada en el diseño de muchas estructuras de hormigón bajo varios niveles de tensión y relaciones de tensión. Muchos resultados de pruebas de fatiga por flexión del hormigón convencional (densidad normal) están disponibles en la literatura y casi todos proporcionan diferentes ecuaciones de fatiga. Sin embargo, es necesario tener una ecuación de fatiga común para predecir la vida a fatiga de diseño de las estructuras de hormigón bajo carga de flexión con una precisión razonable. Por lo tanto, se creó una base de datos de resultados de ensayos de fatiga por flexión para hormigón con resistencias que oscilan entre 25 y 65 MPa; esta base de datos se utilizó para generar nuevas ecuaciones de fatiga (ecuación de fatiga de Wöhler y relación de potencia S-N) para predecir la vida a fatiga por flexión del hormigón de densidad normal. El concepto de vida a fatiga equivalente se introdujo para obtener una ecuación de fatiga utilizando la misma relación de tensión. También se llevó a cabo un análisis probabilístico para desarrollar ecuaciones de fatiga por flexión que incorporen probabilidades de falla.
Descargas
Citas
Deng, P.; Matsumoto, T. (2018) Determination of dominant degradation mechanisms of RC bridge deck slabs under cyclic moving loads. Int. J. Fatigue. 112, 328-340. https://doi.org/10.1016/j.ijfatigue.2018.03.033
Paluri, Y.; Noolu, V.; Mudavath, H.; Pancharathi, R.K. (2021) Flexural fatigue behavior of steel fiber-reinforced reclaimed asphalt pavement-based concrete: an experimental study. Pract. Period. Struct. Des. Constr. 26 [1], 04020053. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000540
Singh, S.P.; Kaushik, S.K. (2003) Fatigue strength of steel fibre reinforced concrete in flexure. Cem. Concr. Compos. 25 [7], 779-786. https://doi.org/10.1016/S0958-9465(02)00102-6
Kesler, C.E. (1953) Effect of speed of testing on flexural fatigue strength of plain concrete. Highw. Res. Board Proc. 32, 251-258.
Singh, S.P.; Kaushik, S.K. (2001) Flexural fatigue analysis of steel fiber-reinforced concrete. ACI Mater. J. 98 [4], 306-312. https://doi.org/10.14359/10399
Oh, B.H. (1986) Fatigue analysis of plain concrete in flexure. J. Struct. Eng. 112 [2], 273-288. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:2(273)
Singh, S.P.; Mohammadi, Y.; Kaushik, S.K. (2005) Flexural fatigue analysis of steel fibrous concrete containing mixed fibers. ACI Mater. J. 102 [6], 438-444. https://doi.org/10.14359/14807
Shi, X.P.; Fwa, T.F.; Tan, S.A. (1993) Flexural fatigue strength of plain concrete. ACI Mater. J. 90 [5], 435-440. https://doi.org/10.14359/3872
Lee, M.K.; Barr, B.I.G. (2004) An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cem. Concr. Compos. 26 [4], 299-305. https://doi.org/10.1016/S0958-9465(02)00139-7
Murdock, J.W.; Kesler, C.E. (1958) Effect of range of stress on fatigue strength of plain concrete beams. ACI J. Proc. 55 [8], 221-231. https://doi.org/10.14359/11350
Zhang, J.; Stang, H.; Li, V.C. (1999) Fatigue life prediction of fiber reinforced concrete under flexural load. Int. J. Fatigue. 21 [10], 1033-1049. https://doi.org/10.1016/S0142-1123(99)00093-6
Tepfers, R.; Kutti, T. (1979) Fatigue strength of plain, ordinary, and lightweight concrete. ACI J. Proc. 76 [5], 635-652. https://doi.org/10.14359/6962
Holman, J.P. (2011) Experimental methods for engineers, 8th edition. McGraw-Hill, (2011).
Mohammadi, Y.; Kaushik, S.K. (2005) Flexural fatigue-life distributions of plain and fibrous concrete at various stress levels. J. Mater. Civ. Eng. 17 [6], 650-658. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:6(650)
Ang, A.H.S.; Tang, W.H. (2007) Probability concepts in engineering: emphasis on applications to civil and environmental engineering, 2nd ed. John Wiley and Sons Inc., New York, (2007).
Treybig, H.J.; Smith, P.; VonQuintus, H. (1977) Overlay design and reflection cracking analysis for rigid pavements -- Vol. 1 Development of new design criteria. Austin, TX United States 78746.
Wirsching, P.H.; Yao, J.T.P. (1982) Fatigue reliability: Introduction. J Struct Div. 108 [1], 3-23. https://doi.org/10.1061/JSDEAG.0005869
Koltsida, I.S.; Tomor, A.K.; Booth, C.A. (2018) Probability of fatigue failure in brick masonry under compressive loading. Int. J. Fatigue. 112, 233-239. https://doi.org/10.1016/j.ijfatigue.2018.03.023
Gumbel, E.J. (1958) Statistics of extremes. Columbia University Press, (1958). https://doi.org/10.7312/gumb92958
Oh, B.H. (1991) Fatigue-life distributions of concrete for various stress levels. ACI Mater. J. 88 [2], 122-128. https://doi.org/10.14359/1870
Sohel, K.M.A.; Al-Jabri, K.; Zhang, M.H.; Liew, J.Y.R. (2018) Flexural fatigue behavior of ultra-lightweight cement composite and high strength lightweight aggregate concrete. Constr. Build. Mater. 173, 90-100. https://doi.org/10.1016/j.conbuildmat.2018.03.276
Weibull, W, (1961) Fatigue testing and analysis of results. Oxford: Pergamon Press, (1961). https://doi.org/10.1016/B978-0-08-009397-0.50006-0
Correia, J.A.F.deO.; Pedrosa, B.A.S.; Raposo, P.C.; et al. (2017) Fatigue strength evaluation of resin-injected bolted connections using statistical analysis. Engineering. 3 [6], 795-805. https://doi.org/10.1016/j.eng.2017.12.001
Kaur, G.; Singh, S.P.; Kaushik, S.K. (2016) Mean and design fatigue lives of SFRC containing cement-based materials. Mag. Concr. Res. 68 [7], 325-338. https://doi.org/10.1680/macr.15.00128
Freudenthal, A.M.; Gumbel, E.J. (1956) Physical and statistical aspects of fatigue. Adv. Appl. Mech. 4, 117-158. https://doi.org/10.1016/S0065-2156(08)70372-7
Wirsching, P.H.; Yao, J.T.P. (1970) Statistical methods in structural fatigue. J. Struct. Div. ASCE. 96 [6], 1201-1219. https://doi.org/10.1061/JSDEAG.0002603
Arora, S.; Singh, S.P. (2016) Analysis of flexural fatigue failure of concrete made with 100% Coarse Recycled Concrete Aggregates. Constr. Build. Mater. 102, 782-791. https://doi.org/10.1016/j.conbuildmat.2015.10.098
Ramakrishnan, V.; Wu, G.Y.; Hosalli, G. (1989) Flexural fatigue strength, endurance limit, and impact strength of fiber reinforced concretes. Transp. Res. Rec. 1226, 17-24.
Johnston, C.D.; Zemp, R.W. (1991) Flexural fatigue performance of steel fiber reinforced concrete. Influence of fiber content, aspect ratio, and type. ACI Mater. J. 88 [4], 374-383. https://doi.org/10.14359/1875
ACI 215R-74. (1997) Considerations for design of concrete structures subjected to fatigue loading (Reapproved 1997). ACI Committee 215, American Concrete Institute, (1997).
Liu, F.; Zheng, W.; Li, L.; Feng, W.; Ning, G. (2013) Mechanical and fatigue performance of rubber concrete. Constr. Build. Mater. 47, 711-719. https://doi.org/10.1016/j.conbuildmat.2013.05.055
Harwalkar, A.; Awanti, S.S. (2017) Probability analysis of flexural fatigue data of high volume fly ash concrete. Inter. Conf. Highw. Pavem. Airfield Technol. 2017. 295-307. https://doi.org/10.1061/9780784480939.026
Tan, Y.; Zhou, C.; Zhou, J. (2020) Influence of the steel fiber content on the flexural fatigue behavior of recycled aggregate concrete. Adv. Civ. Eng. 2020, 8839271. https://doi.org/10.1155/2020/8839271
Zhang, B.; Phillips, D.V.; Wu, K. (1996) Effects of loading frequency and stress reversal on fatigue life of plain concrete. Mag. Concr. Res. 48 [177], 361-375. https://doi.org/10.1680/macr.1996.48.177.361
Lee, D.Y.; Klaiber, F.W.; Coleman, J.W. (1977) Fatigue behavior of air entrained concrete. Department of Civil Engineering, Iowa State University, Ames.
Thomas, T.L. (1979) The effects of air content, water-cement ratio, and aggregate type on the flexural fatigue strength of plain concrete. (Ph.D. thesis), Iowa State University (1979).
Hanumantharayagouda; Patil, A.S. (2013) Flexural fatigue studies for SFRC under compound loading for different stress ranges. Int. J. Recent. Technol. Eng. 2 [4], 2277-3878.
Mithun, B.M.; Narasimhan, M.C.; Nitendra, P.; Ravishankar, A.U. (2015) Flexural fatigue performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. Sel. Sci. Pap. - J. Civ. Eng. 10 [1], 7-18. https://doi.org/10.1515/sspjce-2015-0001
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.
Datos de los fondos
Sultan Qaboos University
Números de la subvención IG/ENG/CAED/18/01