Suitable yeast extract concentration for the production of self-healing mortar with expanded clay as bacterial carrier
DOI:
https://doi.org/10.3989/mc.2022.02422Keywords:
MICP, Yeast extract concentration, Self-healing mortar, Mechanical properties, Bacillus sphaericus, Expanded clayAbstract
In microbial induced calcium carbonate precipitation (MICP) system, yeast extract (YE) is needed for spores germination. The aim of this research is to evaluate the minimum amount of YE in mortar that allows spores of Bacillus sphaericus to germinate with limited negative effect on mortar properties. Two YE concentrations of 2 and 5 g/l were tested and compared to a reference without YE. To protect the bacteria in the mortar matrix, spores or cells were encapsulated into porous expanded clay. The ureolytic activity of bacteria with YE variation, the mechanical properties and the healing ability of mortar were assessed. The results show that a YE concentration of 2 g/l provided acceptable mortar properties, while it was sufficient for spores to germinate and provide a satisfactory healing ability to resulting mortar. When vegetative cells are used as a healing agent, it is best to omit yeast extract from the mortar mixture.
Downloads
References
De Muynck, W.; Kathelijn, C.; De Belie, N.; Verstraete, W. (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construc. Build. Mat. 22, 875-885. https://doi.org/10.1016/j.conbuildmat.2006.12.011
Achal, V.; Pan, X. (2014) Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl. Biochem. Biotech. 173, 307-317. https://doi.org/10.1007/s12010-014-0842-1 PMid:24643454
Ersan, Y.; Gruyaert, E.; Ghislain, L.: Lors, C.; De Belie, N.; Boon, N. (2015) Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front. Microbiol. 6(NOV). https://doi.org/10.3389/fmicb.2015.01228 PMid:26583015 PMCid:PMC4631954
Wang, J.; Vandevyvere, B.; Vanhessche, S.; Schoon, J.; Boon, N.; De Belie, N.(2017) Microbial carbonate precipitation for the improvement of quality of recycled aggregates. J. Clean. Prod. 156, 355-366. https://doi.org/10.1016/j.jclepro.2017.04.051
Wang, J.; Jonkers, H.M.; Boon, N.; De Belie, N. (2017) Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl. Microbiol. Biotechnol. 101, 5101-5114. https://doi.org/10.1007/s00253-017-8260-2 PMid:28365797
De Muynck, W.; Debrouwer, D.; De Belie, N.; Vestraete, W. (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38, 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
Wang, J.Y.; De Belie, N.; Verstraete, W. (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J. Ind. Microbiol. Biotech. 39 [4], 567-577. https://doi.org/10.1007/s10295-011-1037-1 PMid:21927907
Wiktor, V.; Jonkers, H.M. (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Comp. 33 [7], 763-770. https://doi.org/10.1016/j.cemconcomp.2011.03.012
Jonkers, H.M.; Schlangen, E. (2009) A two component bacteria-based self-healing concrete. Concrete Repair, Rehabilitation and Retrofitting II - Proceedings of the 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR. 119-120. https://doi.org/10.1201/9781439828403.ch27
Shang, X.; Li, J.; Zhan, B. (2020) Properties of sustainable cellular concrete prepared with environment-friendly capsule aggregates. J. Clean. Prod. 267, 122018. https://doi.org/10.1016/j.jclepro.2020.122018
Bayati, M.; Saadabadi, L.A. (2021) Efficiency of bacteria based self-healing method in alkali-activated slag (AAS) mortars. J. Build. Eng. 42, 102492. https://doi.org/10.1016/j.jobe.2021.102492
Algaifi, H.A.; Abu Bakar, S.; Sam, AR.M.; Ismail, M.; Abidin, A.R.Z.; Shahir, S.; Altowayti, W.A.H. (2020) Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete. Construc. Build. Mat. 254, 119258. https://doi.org/10.1016/j.conbuildmat.2020.119258
Schwantes-Cezario, N.; Medeiros, L.p.; Gonçalves De Oliveira, A.; Nakazato, G.; Kobayashi, R.K.T.; Toralles, B.M. (2017) Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil. Inter. Biodet. Biodegrad. 123, 200-205. https://doi.org/10.1016/j.ibiod.2017.06.021
Ersan, Y.Ç.; Da Silva, F.B.; Boon, N.; Verstraete, W.; De Belie, N. (2015) Screening of bacteria and concrete compatible protection materials. Construc. Build. Mat. 88, 196-203. https://doi.org/10.1016/j.conbuildmat.2015.04.027
De Muynck, W.; Verbeken, K.; De Belie, N.; Verstraete, W. (2010) Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecolog. Eng. 36, 99-111. https://doi.org/10.1016/j.ecoleng.2009.03.025
Zhang, Y.; Guo, H.X; Cheng, X.H. (2015) Role of calcium sources in the strength and microstructure of microbial mortar. Construc. Build. Mat. 77, 160-167. https://doi.org/10.1016/j.conbuildmat.2014.12.040
Bundur, Z.B.; Kirisits, M.J.; Douglas Ferron, R. (2015) Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength. Cem. Concr. Res. 67, 237-245. https://doi.org/10.1016/j.cemconres.2014.10.002
Bolobova, A.V.; Kondrashchenko, V.I.. (2000) Use of yeast fermentation waste as a bio modifier of concrete (Review). App. Biochem. Microb. 36 [3], 205-214. https://doi.org/10.1007/BF02742567
Vandervoort, M. (2019) Impact of bioagents on the cementitious matrix. Master thesis. Ghent University.
Wang, J.; Mignon, A.; Trenson, G.; Van Vlierberghe, S.; Boon, N.; De Belie, N. (2018) A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete. Cem. Concr. Comp. 93, 309-322. https://doi.org/10.1016/j.cemconcomp.2018.08.007
Mwaiuwinga, S.; Ayano, T.; Sakata, K. (1997) Influence of urea in concrete. Cem. Concr. Res. 27, 733-745. https://doi.org/10.1016/S0008-8846(97)00051-3
Ogunbode, E.B.; Hassan, I.O. (2011) Effect of addition of calcium nitrate on selected properties of concrete containing volcanic ash. Leonardo Electro. J. Practice. Tech. (19), 29-38.
Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. (2011) Mechanisms of cement hydration. Cem. Concr. Res. 41 [12], 1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011
Joshi, S.; Goyal, S.; Sudhakara Reddy, M. (2018) Influence of nutrient components of media on structural properties of concrete during biocementation. Construc. Build. Mat. 158, 601-613. https://doi.org/10.1016/j.conbuildmat.2017.10.055
Thomas, N.L.; Birchall, J.D. (1983) The retarding action of sugars on cement hydration. Cem. Concr. Res. 13, 830-842. https://doi.org/10.1016/0008-8846(83)90084-4
Wang, J.; Boon, N.; De Belie, N. (2018) Bacteria-based self-healing concrete: effect of bio-agents on the cementitious matrix. In: Proceeding of 14th International conference on recent advance in concrete technology and sustainability issue. Beijing: ACI, 151-160.
Kipkemboi, B.; Zhao, T.; Miyazawa, S.; Sakai, E.; Nito, N.; Hirao, H. (2020) Effect of C3S content of clinker on properties of fly ash cement concrete. Construc. Build. Mat. 240, 117840. https://doi.org/10.1016/j.conbuildmat.2019.117840
Martínez-Rodríguez, A.J.; Polo, M.C. (2000) Characterization of the nitrogen compounds released during yeast autolysis in a model wine system. J. Agric. Food Chem. 48, 1081-1085. https://doi.org/10.1021/jf991047a PMid:10775353
Bundur, Z.B.; Kirisits, M.J.; Douglas Ferron, R. (2015) Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength. Cem. Concr. Res. 67, 237-245. https://doi.org/10.1016/j.cemconres.2014.10.002
Wang, J.Y.; De Belie, N.; Verstraete, W. (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J. Ind. Microbiol. Biotech. 39 [4], 567-577. https://doi.org/10.1007/s10295-011-1037-1 PMid:21927907
Wang, J.Y.; Snoeck, D.; Van Vlierberghe, S.; Verstraete, W.; De Belie, N. (2014) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construc. Build. Mat. 68, 110-119. https://doi.org/10.1016/j.conbuildmat.2014.06.018
Bundur, Z.B.; Kirisits, M.J.; Douglas Ferron, R. (2017) Use of pre-wetted lightweight fine expanded shale aggregates as internal nutrient reservoirs for microorganisms in bio-mineralized mortar. Cem. Concr. Comp. 84, 167-174. https://doi.org/10.1016/j.cemconcomp.2017.09.003
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.