Suitable yeast extract concentration for the production of self-healing mortar with expanded clay as bacterial carrier

Authors

DOI:

https://doi.org/10.3989/mc.2022.02422

Keywords:

MICP, Yeast extract concentration, Self-healing mortar, Mechanical properties, Bacillus sphaericus, Expanded clay

Abstract


In microbial induced calcium carbonate precipitation (MICP) system, yeast extract (YE) is needed for spores germination. The aim of this research is to evaluate the minimum amount of YE in mortar that allows spores of Bacillus sphaericus to germinate with limited negative effect on mortar properties. Two YE concentrations of 2 and 5 g/l were tested and compared to a reference without YE. To protect the bacteria in the mortar matrix, spores or cells were encapsulated into porous expanded clay. The ureolytic activity of bacteria with YE variation, the mechanical properties and the healing ability of mortar were assessed. The results show that a YE concentration of 2 g/l provided acceptable mortar properties, while it was sufficient for spores to germinate and provide a satisfactory healing ability to resulting mortar. When vegetative cells are used as a healing agent, it is best to omit yeast extract from the mortar mixture.

Downloads

Download data is not yet available.

References

De Muynck, W.; Kathelijn, C.; De Belie, N.; Verstraete, W. (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construc. Build. Mat. 22, 875-885. https://doi.org/10.1016/j.conbuildmat.2006.12.011

Achal, V.; Pan, X. (2014) Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl. Biochem. Biotech. 173, 307-317. https://doi.org/10.1007/s12010-014-0842-1 PMid:24643454

Ersan, Y.; Gruyaert, E.; Ghislain, L.: Lors, C.; De Belie, N.; Boon, N. (2015) Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front. Microbiol. 6(NOV). https://doi.org/10.3389/fmicb.2015.01228 PMid:26583015 PMCid:PMC4631954

Wang, J.; Vandevyvere, B.; Vanhessche, S.; Schoon, J.; Boon, N.; De Belie, N.(2017) Microbial carbonate precipitation for the improvement of quality of recycled aggregates. J. Clean. Prod. 156, 355-366. https://doi.org/10.1016/j.jclepro.2017.04.051

Wang, J.; Jonkers, H.M.; Boon, N.; De Belie, N. (2017) Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl. Microbiol. Biotechnol. 101, 5101-5114. https://doi.org/10.1007/s00253-017-8260-2 PMid:28365797

De Muynck, W.; Debrouwer, D.; De Belie, N.; Vestraete, W. (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38, 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005

Wang, J.Y.; De Belie, N.; Verstraete, W. (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J. Ind. Microbiol. Biotech. 39 [4], 567-577. https://doi.org/10.1007/s10295-011-1037-1 PMid:21927907

Wiktor, V.; Jonkers, H.M. (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Comp. 33 [7], 763-770. https://doi.org/10.1016/j.cemconcomp.2011.03.012

Jonkers, H.M.; Schlangen, E. (2009) A two component bacteria-based self-healing concrete. Concrete Repair, Rehabilitation and Retrofitting II - Proceedings of the 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR. 119-120. https://doi.org/10.1201/9781439828403.ch27

Shang, X.; Li, J.; Zhan, B. (2020) Properties of sustainable cellular concrete prepared with environment-friendly capsule aggregates. J. Clean. Prod. 267, 122018. https://doi.org/10.1016/j.jclepro.2020.122018

Bayati, M.; Saadabadi, L.A. (2021) Efficiency of bacteria based self-healing method in alkali-activated slag (AAS) mortars. J. Build. Eng. 42, 102492. https://doi.org/10.1016/j.jobe.2021.102492

Algaifi, H.A.; Abu Bakar, S.; Sam, AR.M.; Ismail, M.; Abidin, A.R.Z.; Shahir, S.; Altowayti, W.A.H. (2020) Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete. Construc. Build. Mat. 254, 119258. https://doi.org/10.1016/j.conbuildmat.2020.119258

Schwantes-Cezario, N.; Medeiros, L.p.; Gonçalves De Oliveira, A.; Nakazato, G.; Kobayashi, R.K.T.; Toralles, B.M. (2017) Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil. Inter. Biodet. Biodegrad. 123, 200-205. https://doi.org/10.1016/j.ibiod.2017.06.021

Ersan, Y.Ç.; Da Silva, F.B.; Boon, N.; Verstraete, W.; De Belie, N. (2015) Screening of bacteria and concrete compatible protection materials. Construc. Build. Mat. 88, 196-203. https://doi.org/10.1016/j.conbuildmat.2015.04.027

De Muynck, W.; Verbeken, K.; De Belie, N.; Verstraete, W. (2010) Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecolog. Eng. 36, 99-111. https://doi.org/10.1016/j.ecoleng.2009.03.025

Zhang, Y.; Guo, H.X; Cheng, X.H. (2015) Role of calcium sources in the strength and microstructure of microbial mortar. Construc. Build. Mat. 77, 160-167. https://doi.org/10.1016/j.conbuildmat.2014.12.040

Bundur, Z.B.; Kirisits, M.J.; Douglas Ferron, R. (2015) Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength. Cem. Concr. Res. 67, 237-245. https://doi.org/10.1016/j.cemconres.2014.10.002

Bolobova, A.V.; Kondrashchenko, V.I.. (2000) Use of yeast fermentation waste as a bio modifier of concrete (Review). App. Biochem. Microb. 36 [3], 205-214. https://doi.org/10.1007/BF02742567

Vandervoort, M. (2019) Impact of bioagents on the cementitious matrix. Master thesis. Ghent University.

Wang, J.; Mignon, A.; Trenson, G.; Van Vlierberghe, S.; Boon, N.; De Belie, N. (2018) A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete. Cem. Concr. Comp. 93, 309-322. https://doi.org/10.1016/j.cemconcomp.2018.08.007

Mwaiuwinga, S.; Ayano, T.; Sakata, K. (1997) Influence of urea in concrete. Cem. Concr. Res. 27, 733-745. https://doi.org/10.1016/S0008-8846(97)00051-3

Ogunbode, E.B.; Hassan, I.O. (2011) Effect of addition of calcium nitrate on selected properties of concrete containing volcanic ash. Leonardo Electro. J. Practice. Tech. (19), 29-38.

Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. (2011) Mechanisms of cement hydration. Cem. Concr. Res. 41 [12], 1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011

Joshi, S.; Goyal, S.; Sudhakara Reddy, M. (2018) Influence of nutrient components of media on structural properties of concrete during biocementation. Construc. Build. Mat. 158, 601-613. https://doi.org/10.1016/j.conbuildmat.2017.10.055

Thomas, N.L.; Birchall, J.D. (1983) The retarding action of sugars on cement hydration. Cem. Concr. Res. 13, 830-842. https://doi.org/10.1016/0008-8846(83)90084-4

Wang, J.; Boon, N.; De Belie, N. (2018) Bacteria-based self-healing concrete: effect of bio-agents on the cementitious matrix. In: Proceeding of 14th International conference on recent advance in concrete technology and sustainability issue. Beijing: ACI, 151-160.

Kipkemboi, B.; Zhao, T.; Miyazawa, S.; Sakai, E.; Nito, N.; Hirao, H. (2020) Effect of C3S content of clinker on properties of fly ash cement concrete. Construc. Build. Mat. 240, 117840. https://doi.org/10.1016/j.conbuildmat.2019.117840

Martínez-Rodríguez, A.J.; Polo, M.C. (2000) Characterization of the nitrogen compounds released during yeast autolysis in a model wine system. J. Agric. Food Chem. 48, 1081-1085. https://doi.org/10.1021/jf991047a PMid:10775353

Bundur, Z.B.; Kirisits, M.J.; Douglas Ferron, R. (2015) Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength. Cem. Concr. Res. 67, 237-245. https://doi.org/10.1016/j.cemconres.2014.10.002

Wang, J.Y.; De Belie, N.; Verstraete, W. (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J. Ind. Microbiol. Biotech. 39 [4], 567-577. https://doi.org/10.1007/s10295-011-1037-1 PMid:21927907

Wang, J.Y.; Snoeck, D.; Van Vlierberghe, S.; Verstraete, W.; De Belie, N. (2014) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construc. Build. Mat. 68, 110-119. https://doi.org/10.1016/j.conbuildmat.2014.06.018

Bundur, Z.B.; Kirisits, M.J.; Douglas Ferron, R. (2017) Use of pre-wetted lightweight fine expanded shale aggregates as internal nutrient reservoirs for microorganisms in bio-mineralized mortar. Cem. Concr. Comp. 84, 167-174. https://doi.org/10.1016/j.cemconcomp.2017.09.003

Published

2022-10-14

How to Cite

Risdanareni, P. ., Ma, L. ., Wang, J. ., & De Belie, N. . (2022). Suitable yeast extract concentration for the production of self-healing mortar with expanded clay as bacterial carrier. Materiales De Construcción, 72(348), e296. https://doi.org/10.3989/mc.2022.02422

Issue

Section

Research Articles