Concentración adecuada de extracto de levadura para la producción de mortero autorreparable con arcilla expandida como portador de bacterias

Autores/as

DOI:

https://doi.org/10.3989/mc.2022.02422

Palabras clave:

MICP, Concentración de extracto de levadura, Mortero autorreparable, Propiedades mecánicas, Bacillus sphaericus, Arcilla expandida

Resumen


En el sistema de precipitación de carbonato de calcio inducido por microbios (MICP), el extracto de levadura (YE) es necesario para la germinación de las esporas. El objetivo de esta investigación es evaluar la cantidad mínima de YE en el mortero que permite que las esporas de Bacillus sphaericus germinen con un efecto negativo limitado en las propiedades del mortero. Se ensayaron dos concentraciones de YE de 2 y 5 g/l y se compararon con una referencia sin YE. Para proteger las bacterias en la matriz del mortero, las esporas o las células se encapsularon en arcilla expandida porosa. Se evaluó la actividad ureolítica de las bacterias con la variación de YE, las propiedades mecánicas y la capacidad de reparación del mortero. Los resultados muestran que una concentración de YE de 2 g/l proporcionó propiedades aceptables del mortero, mientras que fue suficiente para que las esporas germinaran y proporcionaran una capacidad de reparación satisfactoria al mortero resultante. Cuando se utilizan células vegetativas como agente de reparación, es mejor omitir el extracto de levadura en la mezcla de mortero.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

De Muynck, W.; Kathelijn, C.; De Belie, N.; Verstraete, W. (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construc. Build. Mat. 22, 875-885. https://doi.org/10.1016/j.conbuildmat.2006.12.011

Achal, V.; Pan, X. (2014) Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Appl. Biochem. Biotech. 173, 307-317. https://doi.org/10.1007/s12010-014-0842-1 PMid:24643454

Ersan, Y.; Gruyaert, E.; Ghislain, L.: Lors, C.; De Belie, N.; Boon, N. (2015) Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front. Microbiol. 6(NOV). https://doi.org/10.3389/fmicb.2015.01228 PMid:26583015 PMCid:PMC4631954

Wang, J.; Vandevyvere, B.; Vanhessche, S.; Schoon, J.; Boon, N.; De Belie, N.(2017) Microbial carbonate precipitation for the improvement of quality of recycled aggregates. J. Clean. Prod. 156, 355-366. https://doi.org/10.1016/j.jclepro.2017.04.051

Wang, J.; Jonkers, H.M.; Boon, N.; De Belie, N. (2017) Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl. Microbiol. Biotechnol. 101, 5101-5114. https://doi.org/10.1007/s00253-017-8260-2 PMid:28365797

De Muynck, W.; Debrouwer, D.; De Belie, N.; Vestraete, W. (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38, 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005

Wang, J.Y.; De Belie, N.; Verstraete, W. (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J. Ind. Microbiol. Biotech. 39 [4], 567-577. https://doi.org/10.1007/s10295-011-1037-1 PMid:21927907

Wiktor, V.; Jonkers, H.M. (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem. Concr. Comp. 33 [7], 763-770. https://doi.org/10.1016/j.cemconcomp.2011.03.012

Jonkers, H.M.; Schlangen, E. (2009) A two component bacteria-based self-healing concrete. Concrete Repair, Rehabilitation and Retrofitting II - Proceedings of the 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR. 119-120. https://doi.org/10.1201/9781439828403.ch27

Shang, X.; Li, J.; Zhan, B. (2020) Properties of sustainable cellular concrete prepared with environment-friendly capsule aggregates. J. Clean. Prod. 267, 122018. https://doi.org/10.1016/j.jclepro.2020.122018

Bayati, M.; Saadabadi, L.A. (2021) Efficiency of bacteria based self-healing method in alkali-activated slag (AAS) mortars. J. Build. Eng. 42, 102492. https://doi.org/10.1016/j.jobe.2021.102492

Algaifi, H.A.; Abu Bakar, S.; Sam, AR.M.; Ismail, M.; Abidin, A.R.Z.; Shahir, S.; Altowayti, W.A.H. (2020) Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete. Construc. Build. Mat. 254, 119258. https://doi.org/10.1016/j.conbuildmat.2020.119258

Schwantes-Cezario, N.; Medeiros, L.p.; Gonçalves De Oliveira, A.; Nakazato, G.; Kobayashi, R.K.T.; Toralles, B.M. (2017) Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil. Inter. Biodet. Biodegrad. 123, 200-205. https://doi.org/10.1016/j.ibiod.2017.06.021

Ersan, Y.Ç.; Da Silva, F.B.; Boon, N.; Verstraete, W.; De Belie, N. (2015) Screening of bacteria and concrete compatible protection materials. Construc. Build. Mat. 88, 196-203. https://doi.org/10.1016/j.conbuildmat.2015.04.027

De Muynck, W.; Verbeken, K.; De Belie, N.; Verstraete, W. (2010) Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecolog. Eng. 36, 99-111. https://doi.org/10.1016/j.ecoleng.2009.03.025

Zhang, Y.; Guo, H.X; Cheng, X.H. (2015) Role of calcium sources in the strength and microstructure of microbial mortar. Construc. Build. Mat. 77, 160-167. https://doi.org/10.1016/j.conbuildmat.2014.12.040

Bundur, Z.B.; Kirisits, M.J.; Douglas Ferron, R. (2015) Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength. Cem. Concr. Res. 67, 237-245. https://doi.org/10.1016/j.cemconres.2014.10.002

Bolobova, A.V.; Kondrashchenko, V.I.. (2000) Use of yeast fermentation waste as a bio modifier of concrete (Review). App. Biochem. Microb. 36 [3], 205-214. https://doi.org/10.1007/BF02742567

Vandervoort, M. (2019) Impact of bioagents on the cementitious matrix. Master thesis. Ghent University.

Wang, J.; Mignon, A.; Trenson, G.; Van Vlierberghe, S.; Boon, N.; De Belie, N. (2018) A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete. Cem. Concr. Comp. 93, 309-322. https://doi.org/10.1016/j.cemconcomp.2018.08.007

Mwaiuwinga, S.; Ayano, T.; Sakata, K. (1997) Influence of urea in concrete. Cem. Concr. Res. 27, 733-745. https://doi.org/10.1016/S0008-8846(97)00051-3

Ogunbode, E.B.; Hassan, I.O. (2011) Effect of addition of calcium nitrate on selected properties of concrete containing volcanic ash. Leonardo Electro. J. Practice. Tech. (19), 29-38.

Bullard, J.W.; Jennings, H.M.; Livingston, R.A.; Nonat, A.; Scherer, G.W.; Schweitzer, J.S.; Scrivener, K.L.; Thomas, J.J. (2011) Mechanisms of cement hydration. Cem. Concr. Res. 41 [12], 1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011

Joshi, S.; Goyal, S.; Sudhakara Reddy, M. (2018) Influence of nutrient components of media on structural properties of concrete during biocementation. Construc. Build. Mat. 158, 601-613. https://doi.org/10.1016/j.conbuildmat.2017.10.055

Thomas, N.L.; Birchall, J.D. (1983) The retarding action of sugars on cement hydration. Cem. Concr. Res. 13, 830-842. https://doi.org/10.1016/0008-8846(83)90084-4

Wang, J.; Boon, N.; De Belie, N. (2018) Bacteria-based self-healing concrete: effect of bio-agents on the cementitious matrix. In: Proceeding of 14th International conference on recent advance in concrete technology and sustainability issue. Beijing: ACI, 151-160.

Kipkemboi, B.; Zhao, T.; Miyazawa, S.; Sakai, E.; Nito, N.; Hirao, H. (2020) Effect of C3S content of clinker on properties of fly ash cement concrete. Construc. Build. Mat. 240, 117840. https://doi.org/10.1016/j.conbuildmat.2019.117840

Martínez-Rodríguez, A.J.; Polo, M.C. (2000) Characterization of the nitrogen compounds released during yeast autolysis in a model wine system. J. Agric. Food Chem. 48, 1081-1085. https://doi.org/10.1021/jf991047a PMid:10775353

Bundur, Z.B.; Kirisits, M.J.; Douglas Ferron, R. (2015) Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength. Cem. Concr. Res. 67, 237-245. https://doi.org/10.1016/j.cemconres.2014.10.002

Wang, J.Y.; De Belie, N.; Verstraete, W. (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J. Ind. Microbiol. Biotech. 39 [4], 567-577. https://doi.org/10.1007/s10295-011-1037-1 PMid:21927907

Wang, J.Y.; Snoeck, D.; Van Vlierberghe, S.; Verstraete, W.; De Belie, N. (2014) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construc. Build. Mat. 68, 110-119. https://doi.org/10.1016/j.conbuildmat.2014.06.018

Bundur, Z.B.; Kirisits, M.J.; Douglas Ferron, R. (2017) Use of pre-wetted lightweight fine expanded shale aggregates as internal nutrient reservoirs for microorganisms in bio-mineralized mortar. Cem. Concr. Comp. 84, 167-174. https://doi.org/10.1016/j.cemconcomp.2017.09.003

Publicado

2022-10-14

Cómo citar

Risdanareni, P. ., Ma, L. ., Wang, J. ., & De Belie, N. . (2022). Concentración adecuada de extracto de levadura para la producción de mortero autorreparable con arcilla expandida como portador de bacterias. Materiales De Construcción, 72(348), e296. https://doi.org/10.3989/mc.2022.02422

Número

Sección

Artículos