Experimental investigation of clogging mechanism of pervious concrete made with variable aggregate gradations

Authors

DOI:

https://doi.org/10.3989/mc.2023.319922

Keywords:

Pervious concrete, Permeability, Porosity, Compressive strength, Clogging potential

Abstract


In this study, the clogging mechanism of pervious concrete was evaluated using three different cloggers such as, Sand (S), Clay (C), and combination of sand and clay (S &C). The clogging mechanism was performed through falling head permeability apparatus, using clogger sediment load at the rate of 50, 150, and 200 grams in repetitive clogging cycles. It was observed from the results that combined (S & C) clogger shows overall critical results of clogging as 80% of the clogging was seen in 3 to 4 cycles. Moreover, it was observed from the results that pervious concrete mix made with R- type of aggregate gradation shows optimum compressive strength of the order of 8.6, 15.9, and 17 MPa at 7, 28 and 56 days of curing. Furthermore, the visual inspection test shows that clogging by clay clogger shows an even distribution of sediment on the whole length of the sample.

Downloads

Download data is not yet available.

References

Wang, H.; Li, H.; Liang, X.; Zhou, H.; Xie, N.; Dai, Z. (2019) Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio. Constr. Build. Mater. 202, 387-95.

Nguyen, D.H.; Boutouil, M.; Sebaibi, N.; Baraud, F.; Leleyter, L. (2017) Durability of pervious concrete using crushed seashells. Constr. Build. Mater. 135, 137-50.

Calkins, J.; Kney, A.; Suleiman, M.T.; Weidner, A. (2010) Removal of heavy metals using pervious concrete material. World Environ. Wat. Res. Cong. 37, 74-83.4.Gaedicke, C.; Marines, A.; Miankodila, F. (2014) A method for comparing cores and cast cylinders in virgin and recycled aggregate pervious concrete. Constr. Build. Mater. 52, 494-503.

Ali, T.K.M.; Hilal, N.; Faraj, R.H.; Al-Hadithi, A.I. (2020) Properties of eco-friendly pervious concrete containing polystyrene aggregates reinforced with waste PET fibers. Innov. Infrastruct. Solut. 77, 1-16.

Nazeer, M.; Kapoor, K.; Singh, S.P. (2023) Strength and microstructural properties of pervious concrete made with different powder to aggregate ratios. Eur. J. Environ. Civ. Eng. 1-25.

Ramkrishnan, R.; Abilash, B.; Trivedi, M.; Varsha, P.; Varun, P.; Vishanth, S. (2018) Effect of mineral admixtures on pervious concrete. Mater. Today Proc. 5 [11], 24014-24023.

Lu, G.; Liu, P.; Wang, Y.; Fabender, S.; Wang, D.; Oeser, M. (2019) Development of a sustainable pervious pavement material using recycled ceramic aggregate and bio-based polyurethane binder. J. Clean. Prod. 220, 1052-1060.

Yang, J.; Jiang, G. (2003) Experimental study on properties of pervious concrete pavement materials. Cem. Conc. Res. 33 [3], 381-386.

Aman, A.M.N.; Selvarajoo, A.; Chong, S.; Teo, F.Y. (2022) Comparative life cycle assessment of pervious concrete production in Malaysia with natural and recycled aggregate. Innov. Infrastruct. Solut. 7, 211.

Zhang, Y.; Li, H.; Abdelhady, A.; Yang, J. (2020) Effect of different factors on sound absorption property of porous concrete. Transp. Res. Part D. 87, 102532.

Ibrahim, A.; Mahmoud, E.; Yamin, M.; Chowdary, V. (2013) Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Constr. Build. Mater. 50, 524-529.

Wang, H.; Li, H.; Liang, X.; Zhou, H.; Xie, N.; Dai, Z. (2019) Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio. Constr. Build. Mater. 202, 387-395.

Neptune, A. (2008) Investigation of the effects of aggregate properties and gradation on pervious concrete mixtures. Thesis. 1-154. Retrieved from: https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=1460&context=all_theses.15.Kia, A.; Wong, H.S.; Cheeseman, C.R. (2019) High-strength clogging resistant permeable pavement. Int. J. Pavement Eng. 22 [3], 271-282.

Liu, R.; Chi, Y.; Chen, S.; Jiang, Q.; Meng, X.; Wu, K. (2020) Influence of pore structure characteristics on the mechanical and durability behavior of pervious concrete material based on image analysis. Int. J. Concr. Struct. Mater. 14, 29.

El-Hassan, H.; Kianmehr, P.; Zouaoui, S. (2019) Properties of pervious concrete incorporating recycled concrete aggregates and slag. Constr. Build. Mater. 212, 164-175.

Wang, K.; Schaefer, V.R.; Kevern, J.T. (2015) Development of mix proportion for functional and durable pervious concrete. NRMCA Con. Tech. Forum. 1-12.19.Mulyono, T.; Anisah, M.T. (2019) Properties of pervious concrete with various types and sizes of aggregate. MATEC Web Conf. 276, 01025.

Lim, E.; Hwee, K.; Fang, T. (2013) Effect of mix proportion on strength and permeability of pervious concrete for use in pavement. J. East. Asia Soc. Tran. Studies. 1-11.21.Yeih, W.; Fu, T.C.; Chang, J.J.; Huang, R. (2015) Properties of pervious concrete made with air-cooling electric arc furnace slag as aggregates. Constr. Build. Mater. 93, 737-745.

Chopra, M.; Asce, M.; Kakuturu, S.; Asce, A.M.; Ballock, C.; Asce, A.M. (2010) Effect of rejuvenation methods on the infiltration rates of pervious concrete pavements. J. Hyd. Eng. 15 [6], 426-33.

Singh, D.; Singh, S.P. (2020) Influence of recycled concrete aggregates and blended cements on the mechanical properties of pervious concrete. Innov. Infrastruct. Solut. 5, 66.

Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Fawzy, A.M. (2018) Experimental investigation on permeability indices and strength of modified pervious concrete with recycled concrete aggregate. Constr. Build. Mater. 193, 105-27.

Sun, Z.; Lin, X.; Vollpracht, A. (2018) Pervious concrete made of alkali activated slag and geopolymers. Constr. Build. Mater. 189, 797-803.

Aydin, S.; Yazici, H. (2010) Effect of aggregate type on mechanical properties of RPC. J. Mod. Tech. Eng. 107 [5], 441-449.27.Zhang, Z.; Zhang, Y.; Yan, C.; Liu, Y. (2017) Influence of crushing index on properties of recycled aggregates pervious concrete. Constr. Build. Mater. 135, 112-118.

Sun, Z.; Lin, X.; Vollpracht, A. (2018) Pervious concrete made of alkali activated slag and geopolymers. Constr. Build. Mater. 189, 797-803.

Kayhanian, M.; Anderson, D.; Harvey, J.T.; Jones, D.; Muhunthan, B. (2012) Permeability measurement and scan imaging to assess clogging of pervious concrete pavements in parking lots. J. Environ. Manage. 95 [1], 114-23.

Deo, O.; Asce, M.; Sumanasooriya, M.; Asce, M.; Neithalath, N. (2010) Permeability reduction in pervious concretes due to clogging: experiments and modeling. J. Mat. Civil Eng. 22 [7], 741-751.

Bean, E.Z.; Hunt, W.F.; Bidelspach, D.A. (2007) Field survey of permeable pavement surface infiltration rates. J. Irrig. Drain. Eng. 133 [3], 249-255.

Sandoval, G.F.B.; de Moura, A.C.; Jussiani, E.I.; Andrello, A.C.; Toralles B.M. (2020) Proposal of maintenance methodology for pervious concrete (PC) after the phenomenon of clogging. Constr. Build. Mater. 248, 118672.

Winston, R.J.; Al-Rubaei, A.M.; Blecken, G.T.; Viklander, M.; Hunt,W.F. (2016) Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate - The effects of street sweeping, vacuum cleaning, high pressure washing and milling. J. Environ. Manage. 169, 132-44.

Sandoval, G.F.B.; Galobardes, I.; Toralles, B.M. (2020) Assessing the phenomenon of clogging of pervious concrete (Pc): Experimental test and model proposition. J. Buil. Eng. 29, 101203.

Haselbach, L.M.; Asce, M. (2010) Potential for clay clogging of pervious concrete under extreme conditions. J. Hydr. Eng. 15 [1], 67-69.

Kia, A.; Wong, H.S.; Cheeseman, C.R. (2017) Clogging in permeable concrete: A review. J. Environ. Manage. 193, 221-233.

IS: 8112-1989 (2013) Specification for 43 grade ordinary portland cement. Bur. Indian Stand. 1-17.

IS: 4031 (Part 2)-1999 (2004) Methods of physical tests for hydraulic cement, Determination of fineness by specific surface by Blaine air permeability method. Bur. Indian Stand. 1-13.

IS: 4031-1988 (1988) Methods of physical tests for Hydraulic cement. Bu.r Indian Stand. 1-6.

IS: 383-1970 (1970) Specification for coarse and fine aggreagtes from natural sources for concrete. Bur. Indian Stand. 1-24.

IS: 2386- Part I (2002) Method of test for aggregate for concrete. Particle size and shape. Bur. Indian Stand1-26.

NRMCA. Guide to Specifying Pervious Concrete.

ASTM C1754/C1754-12. (2012) Standard test method for density and void content of hardened pervious concrete. ASTM Stand. 1-3.

IS: 516 (1959) Method of tests for strength of concrete. Bur. Indian Stand. 1-30.

Haselbach, L.M.; Valavala, S.; Montes, F. (2006) Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems. J. Environ. Manage. 81 [1], 42-49.

Ramadhansyah, P.J.; Y M.I.M.; Hainin, M.R.; Warid, M.N.M.; Ibrahim, W. (2014) Porous concrete pavement containing nano-silica: Pre-review. 911, 454-458.

Yao, A.; Ding, H.; Zhang, X.; Hu, Z.; Hao, R.; Yang, T. (2018) Optimum design and performance of porous concrete for heavy-load traffic pavement in cold and heavy rainfall region of NE China. Adv. Mater. Sci. Eng. 2018, 7082897.

Ni, T.Y.; Jiang, C.H.; Tai, H.X., Zhao, G.Q. (2014) Experimental study on sound absorption property of porous concrete pavement layer. Appl. Mech. Mater. 507, 238-241.

Neithalath, N.; Marolf, A.; Weiss, J.; Olek, J. (2005) Modeling the influence of pore structure on the acoustic absorption of enhanced porosity concrete. J. Adv. Concr. Technol. 3 [1], 29-40.

Neithalath, N.; Weiss, J.; Olek, J. (2015) Improving the acoustic absorption of enhanced porosity concrete with fiber reinforcement. Int. RILEM. Symp. Concr. Sci. Eng. 1-16.

Committee ACI. (2015) ACI 522R-10 Report on pervious concrete. 10, 1-44.

Ćosić, K.; Korat, L.; Ducman, V.; Netinger, I. (2015) Influence of aggregate type and size on properties of pervious concrete. Constr. Build. Mater. 78, 69-76.

IS: 2386-Part IV. (2016) Methods of test for aggregates for concrete: Mechanical properties. Bur. Indian Stand. New Delhi. 1-37.

ASTM C131M-20. (2014) C131/C131M-14 Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles Machine. 5-8.

ASTM C 128-01 (2001) Standard test method for density, relative density (Specific gravity), and absorption. 1-6.

Bureau of Indian Standards (BIS) (2002) IS:2386-Part V-1963: Methods of test for aggregates for concrete. Indian Stand. 1-14.

ASTM C 127-01 (2001) Standard test method for relative density (Specific gravity) and absorption of coarse. 88, 1-6.58.ASTM C29/C29M − 17a. (2017) Standard test method for bulk density (Unit weight) and Voids in aggregate. 1, 5-9.

Published

2023-08-10

How to Cite

Nazeer, M., Kapoor, K., & Singh, S. (2023). Experimental investigation of clogging mechanism of pervious concrete made with variable aggregate gradations. Materiales De Construcción, 73(351), e320. https://doi.org/10.3989/mc.2023.319922

Issue

Section

Research Articles