Recycling of eps foam and demolition wastes in the preparation of ecofriendly render mortars with thermal-acoustic insulation properties
DOI:
https://doi.org/10.3989/mc.2023.342422Keywords:
Interior render mortar, Composite, Demolition waste, Recycling, Circular economyAbstract
The design of render-mortars from construction and demolition waste (CDW) was evaluated. Fine aggregates from red-clay-brick waste, mortar and concrete waste were used, together with recycled expanded-polystyrene (EPS) as lightweight filler. Mixes composed of 70%-recycled aggregates, and 30% consisting of a matrix of Portland cement were produced. Characterization tests were conducted on the physical, mechanical, thermal, and acoustic properties. The render-mortar A4, A7 and A9 can be classified according to compressive strength results as CSI-W0 for interior use under standard UNE-EN-998-1. The A7 mortar, with the best physical and mechanical results, contained 21% EPS, 17.5% brick waste and 17.5% mortar waste. Mix A4 obtained the lowest thermal conductivity, 0.12 W/m·K - a reduction of 79% compared to the commercial-mortar AC1. The acoustic absorption properties were also enhanced by the incorporation of EPS, such that the A4, A7, and A9 mixes were identified as Absorbent for the frequencies of 2000 Hz and 4000 Hz.
Downloads
References
Duan, P.; Song, L.; Yan, C.; Ren, D.; Li, Z. (2017) Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram. Int. 43 [6], 5115-5120. https://doi.org/10.1016/j.ceramint.2017.01.025
Domínguez, A.; Domínguez, M.I.; Ivanova, S.; Centeno, M.A.; Odriozola, J.A. (2016) Recycling of construction and demolition waste generated by building infrastructure for the production of glassy materials. Ceram. Int. 42 [14], 15217-15223. https://doi.org/10.1016/j.ceramint.2016.06.157
Aghdam, K.A.; Rad, A.F.; Shakeri, H.; Sardroud, J.M. (2018) Approaching green buildings using eco-efficient construction materials: a review of the state-of-the-art. J. Constr. Eng. Proj. Manag. 8 [3], 1-23.
Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. (2019) Status quo and future directions of construction and demolition waste research: A critical review. J. Clean. Prod. 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163
Akhtar, A.; Sarmah, A.K. (2018) Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 186, 262-281. https://doi.org/10.1016/j.jclepro.2018.03.085
Wang, X.; Yu, R.; Shui, Z.; Song, Q.; Liu, Z.; Bao, M.; Liu, Z.; Wu, S. (2019) Optimized treatment of recycled construction and demolition waste in developing sustainable ultra-high performance concrete. J. Clean. Prod. 221, 805-816. https://doi.org/10.1016/j.jclepro.2019.02.201
Vincent, T.; Guy, M.; Louis-César, P.; Jean-François, B.; Richard, M. (2022) Physical process to sort construction and demolition waste (C&DW) fines components using process water. Waste Manag. 143, 125-134. https://doi.org/10.1016/j.wasman.2022.02.012 PMid:35240448
RMCDQ. (2017) Évaluation des alternatives de valorisation des résidus de criblage fin issus des centres de tri des débris de construction, de rénovation et de démolition. Quebec. Retrieved from www.3rmcdq.qc.ca.
Reciclados Industriales. Bogotá. (2019) Retrieved from https://recicladosindustriales.co/.
Ecotech, G. CDW Disposal System GEPECOTECH. (2022). Retrieved from https://www.gepecotech.com/solution/construction-demolition-waste-system.html?utm_source=google&utm_medium=g&utm_campaign=cdwaste&utm_content=649540851337&utm_term=demolition_wasterecycling&match=p&item=&target=kwd-3920165559&device=c&gclid=CjwKCAjwiOCgB.
Şimşek, O.; Pourghadri H.; Gökçe, H.S. (2022) Performance of fly ash-blended Portland cement concrete developed by using fine or coarse recycled concrete aggregate. Constr. Build. Mater. 357, 129431. https://doi.org/10.1016/j.conbuildmat.2022.129431
Ferreira, R.L.S.; Anjos, M.A.S.; Ledesma, E.F.; Pereira, J.E.S. and Nóbrega, A.K.C. (2020) Evaluation of the physical-mechanical properties of cement-lime based masonry mortars produced with mixed recycled aggregates. Mater. Constr. 70 [337], e210. https://doi.org/10.3989/mc.2020.02819
López Ruiz, L.A.; Roca Ramón, X.; Gassó Domingo, S. (2020) The circular economy in the construction and demolition waste sector - A review and an integrative model approach. J. Clean. Prod. 248, 119238. https://doi.org/10.1016/j.jclepro.2019.119238
Kumar, G.; Shrivastava, S.; Gupta, R.C. (2020) Paver blocks manufactured from construction & demolition waste. Mater. Today Proc. 27, 311-317. https://doi.org/10.1016/j.matpr.2019.11.039
Garg, N.; Shrivastava, S. (2022) A review on utilization of recycled concrete aggregates (RCA) and ceramic fines in mortar application. Mater. Today Proc. 73, 64-73. https://doi.org/10.1016/j.matpr.2022.09.226
Miranda, L.F.R.; Selmo, S.M.S. (2006) CDW recycled aggregate renderings: Part I - Analysis of the effect of materials finer than 75 μm on mortar properties. Constr. Build. Mater. 20 [9], 615-624. https://doi.org/10.1016/j.conbuildmat.2005.02.025
Braga, M.; Brito, J.; Veiga, R. (2012) Incorporation of fine concrete aggregates in mortars. Constr. Build. Mater. 36, 960-968. https://doi.org/10.1016/j.conbuildmat.2012.06.031
Silva, R.V.; Brito, J.; Dhir, R.K. (2016) Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Constr. Build. Mater. 105, 400-415. https://doi.org/10.1016/j.conbuildmat.2015.12.171
Jesus, S.; Maia, C.; Brazão Farinha, C.; Brito, J.; Veiga, R. (2019) Rendering mortars with incorporation of very fine aggregates from construction and demolition waste. Constr. Build. Mater. 229, 116844. https://doi.org/10.1016/j.conbuildmat.2019.116844
Ferreira, R.L.S.; Anjos, M.A.S.; Nóbrega, A.K.C.; Pereira, J.E.S.; Ledesma, E.F. (2019) The role of powder content of the recycled aggregates of CDW in the behaviour of rendering mortars Constr. Build. Mater. 208, 601-612. https://doi.org/10.1016/j.conbuildmat.2019.03.058
Deer, R. (2021) Styrofoam an environmental problem? RoadRunner. Retrieved from https://www.roadrunnerwm.com/blog/styrofoam-problems-and-how-to-help#:%7E:text=Most_recycling_facilities_are_unable_is_time_consuming_and_expensive.
EPA. (2022) Containers and packaging United States Environmental Protection Agency. Retrieved from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/containers-and-packaging-product-specific.
Cácerres, M.A.; Sánchez, M.; Soto, M.; Maspoch, L.; Sánchez Hernández, M.; Sánchez Rojo, A. (2015) Desarrollo de un proceso de reciclaje para la fracción mixta de residuos de plástico, provenientes de plantas de separación selectiva. in II Congrés UPC Sostenible. Retrieved from https://upcommons.upc.edu/handle/2099/8207?show=full.
World centric for a better world (2019) Impacts and risks of polystyrene. https://www.worldcentric.com/journal/impacts-and-risks-of-styrofoam.
Morales, M.P.; Muñoz, P.; Juárez, M.C.; Mendívil, M.A.; Olasolo, P. (2016). Influence of the type of lightweight clay brick on the equivalent thermal transmittance of different types of façades on buildings. Mater. Construcc. 66 [323], e096. https://doi.org/10.3989/mc.2016.08115
Gencel, O.; Coz Diaz, J.J.; Stcu, M.; Koksal, F.; Alvarez, F.P.; Martinez-Barrera, G.; Brostow, W. (2014) Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy Build. 70, 135-144. https://doi.org/10.1016/j.enbuild.2013.11.047
Binici, H.; Aksogan, O.; Dıncer, A.; Luga, E.; Eken, M.; Isikaltun, O. (2020) The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production. Therm. Sci. Eng. Prog. 18 [21], 100567. https://doi.org/10.1016/j.tsep.2020.100567
Fernández, D.; Yedra, E.; Morón, C.; Zaragoza, A.; Kosior-Kazberuk, M. (2022) Circular building process: reuse of insulators from construction and demolition waste to produce lime mortars. Buildings. 12 [2], 220. https://doi.org/10.3390/buildings12020220
Villaquirán-Caicedo, M.A.; Perea, V.N.; Ruiz, J.E.; Mejía de Gutiérrez, R. (2022) Mechanical, physical and thermoacoustic properties of lightweight composite geopolymers Propiedades mecánicas, físicas y termoacústicas de geopolímeros compuestos aligerados. Ingen. Compet. 24 [1], 1-21. https://doi.org/10.25100/iyc.v24i1.10985
Oliveira, K.A.; Oliveira, C.A.B.; Molina, J.C. (2021) Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum. Mater. Construcc. 71 [341], e242. https://doi.org/10.3989/mc.2021.07520
Fraile-Garcia, E.; Ferreiro-Cabello, J.; Defez, B.; Peris-Fajanes, G. (2016) Acoustic behavior of hollow blocks and bricks made of concrete doped with waste-tire rubber. Mater. 9 [12], 962. https://doi.org/10.3390/ma9120962 PMid:28774084 PMCid:PMC5456962
Holmes, N.; Browne, A; Montague, C. (2014) Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 73, 195-204. https://doi.org/10.1016/j.conbuildmat.2014.09.107
Orrego Gonzáles, A.; Ealo Cuello, J.L.; Pazos Ospina, J.F. (2018) Low-cost and easily implemented anechoic acoustic chambers. Sci. Tech. 23 [4], 471-478.
Ferreira, R.L.S.; Anjos, M.A.S.; Maia, C.; Pinto, L.; Azevedo, A.R.; Brito, J. (2021) Long-term analysis of the physical properties of the mixed recycled aggregate and their effect on the properties of mortars. Constr. Build. Mater. 274, 121796. https://doi.org/10.1016/j.conbuildmat.2020.121796
Bonifazi, G.; Palmieri, R; Serranti, S. (2018) Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging. Constr. Build. Mater. 169, 835-842. https://doi.org/10.1016/j.conbuildmat.2018.03.048
Kim, J. (2022) Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview. Constr. Build. Mater. 328, 127071. https://doi.org/10.1016/j.conbuildmat.2022.127071
Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. (2016) Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 112, 716-724. https://doi.org/10.1016/j.conbuildmat.2016.02.218
Zawrah, M.F.; Gado, R.A.; Feltin, N.; Ducourtieux, S.; Devoille, L. (2016) Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf. Environ. Prot. 103, 237-251. https://doi.org/10.1016/j.psep.2016.08.001
Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321], e075. https://doi.org/10.3989/mc.2016.08414
Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: Ceramic masonry waste. J. Clean. Prod. 87 [1], 692-706. https://doi.org/10.1016/j.jclepro.2014.10.084
Bumanis, G.; Pavils, P.; Sahmenko, G.; Mironovs, D.; Rucevskis, S.; Korjakins, A.; Bajare, D. (2023) Thermal and sound insulation properties of recycled expanded polystyrene granule and gypsum composites. Recycling. 8 [1], 19. https://doi.org/10.3390/recycling8010019
Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. (2016). Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Clean. Prod. 118, 162-169. https://doi.org/10.1016/j.jclepro.2016.01.059
Patra, I.; Al-Awsi, G.R.L.; Hasan, Y.M.; Almotlaq, S.S.K. (2022) Mechanical properties of concrete containing recycled aggregate from construction waste. Sustain. Energy Technol. Assessments. 53, 102722. https://doi.org/10.1016/j.seta.2022.102722
Fernández, D.; Álvarez, M.; Saiz, P.; Zaragoza, A. (2022) Experimental study with plaster mortars made with recycled aggregate and thermal insulation residues for application in building. Sustain. 14 [4], 2386. https://doi.org/10.3390/su14042386
Villaquirán-Caicedo, M.A.; Mejía de Gutierrez, R.; Sulekar, S.; Davis, C.; Nino, J. (2015) Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources Appl. Clay Sci. 118, 276-282. https://doi.org/10.1016/j.clay.2015.10.005
Chindaprasirt, P. (2022) Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate. J. Build. Eng. 60, 105178. https://doi.org/10.1016/j.jobe.2022.105178
Balaji, N.C.; Mani, M.; Reddy, B.V. (2013) Thermal performance of the building walls. In 1st IBPSA Italy Conference Free University of Bozen-Bolzano. 346, 1-8. Retrieved from http://www.ibpsa.org/bsa-2013-bozen-bolzano-italy-conference-proceedings/.
Serna Jara, L.M. (2016) Research study against high intensity fireworks for pipeline conductions in the petrochemical industry. Rev. Dr. UMH, 2 [1], 1-10. Retrieved from https://revistas.innovacionumh.es/index.php/doctorado/article/view/615/966.
Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, J. (2012) Porous alumina and zirconia ceramics with tailored thermal conductivity. J. Phys. Conf. Ser. 395, 012022. https://doi.org/10.1088/1742-6596/395/1/012022
Moretti, E.; Belloni, E.; Agosti, F. (2016) Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization. Appl. Energy, 169, 421-432. https://doi.org/10.1016/j.apenergy.2016.02.048
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.