Recycling of eps foam and demolition wastes in the preparation of ecofriendly render mortars with thermal-acoustic insulation properties




Interior render mortar, Composite, Demolition waste, Recycling, Circular economy


The design of render-mortars from construction and demolition waste (CDW) was evaluated. Fine aggregates from red-clay-brick waste, mortar and concrete waste were used, together with recycled expanded-polystyrene (EPS) as lightweight filler. Mixes composed of 70%-recycled aggregates, and 30% consisting of a matrix of Portland cement were produced. Characterization tests were conducted on the physical, mechanical, thermal, and acoustic properties. The render-mortar A4, A7 and A9 can be classified according to compressive strength results as CSI-W0 for interior use under standard UNE-EN-998-1. The A7 mortar, with the best physical and mechanical results, contained 21% EPS, 17.5% brick waste and 17.5% mortar waste. Mix A4 obtained the lowest thermal conductivity, 0.12 W/m·K - a reduction of 79% compared to the commercial-mortar AC1. The acoustic absorption properties were also enhanced by the incorporation of EPS, such that the A4, A7, and A9 mixes were identified as Absorbent for the frequencies of 2000 Hz and 4000 Hz.


Download data is not yet available.


Duan, P.; Song, L.; Yan, C.; Ren, D.; Li, Z. (2017) Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram. Int. 43 [6], 5115–5120.

Domínguez, A.; Domínguez, M.I.; Ivanova, S.; Centeno, M.A.; Odriozola, J.A. (2016) Recycling of construction and demolition waste generated by building infrastructure for the production of glassy materials. Ceram. Int. 42 [14], 15217–15223.

Aghdam, K.A.; Rad, A.F.; Shakeri, H.; Sardroud, J.M. (2018) Approaching green buildings using eco-efficient construction materials: a review of the state-of-the-art. J. Constr. Eng. Proj. Manag. 8 [3], 1–23.

Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. (2019) Status quo and future directions of construction and demolition waste research: A critical review. J. Clean. Prod. 240, 118163.

Akhtar, A.; Sarmah, A.K. (2018) Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 186, 262–281.

Wang, X.; Yu, R.; Shui, Z.; Song, Q.; Liu, Z.; Bao, M.; Liu, Z.; Wu, S. (2019) Optimized treatment of recycled construction and demolition waste in developing sustainable ultra-high performance concrete. J. Clean. Prod. 221, 805–816.

Vincent, T.; Guy, M.; Louis-César, P.; Jean-François, B.; Richard, M. (2022) Physical process to sort construction and demolition waste (C&DW) fines components using process water. Waste Manag. 143, 125–134.

RMCDQ. (2017) Évaluation des alternatives de valorisation des résidus de criblage fin issus des centres de tri des débris de construction, de rénovation et de démolition. Quebec. Retrieved from

Reciclados Industriales. Bogotá. (2019) Retrieved from

Ecotech, G. CDW Disposal System GEPECOTECH. (2022). Retrieved from

Şimşek, O.; Pourghadri H.; Gökçe, H.S. (2022) Performance of fly ash-blended Portland cement concrete developed by using fine or coarse recycled concrete aggregate. Constr. Build. Mater. 357, 129431.

Ferreira, R.L.S.; Anjos, M.A.S.; Ledesma, E.F.; Pereira, J.E.S. and Nóbrega, A.K.C. (2020) Evaluation of the physical-mechanical properties of cement-lime based masonry mortars produced with mixed recycled aggregates. Mater. Constr. 70 [337], e210.

López Ruiz, L.A.; Roca Ramón, X.; Gassó Domingo, S. (2020) The circular economy in the construction and demolition waste sector – A review and an integrative model approach. J. Clean. Prod. 248, 119238.

Kumar, G.; Shrivastava, S.; Gupta, R.C. (2020) Paver blocks manufactured from construction & demolition waste. Mater. Today Proc. 27, 311–317.

Garg, N.; Shrivastava, S. (2022) A review on utilization of recycled concrete aggregates (RCA) and ceramic fines in mortar application. Mater. Today Proc. 73, 64-73.

Miranda, L.F.R.; Selmo, S.M.S. (2006) CDW recycled aggregate renderings: Part I - Analysis of the effect of materials finer than 75 μm on mortar properties. Constr. Build. Mater. 20 [9], 615–624.

Braga, M.; Brito, J.; Veiga, R. (2012) Incorporation of fine concrete aggregates in mortars. Constr. Build. Mater. 36, 960–968.

Silva, R.V.; Brito, J.; Dhir, R.K. (2016) Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Constr. Build. Mater. 105, 400–415.

Jesus, S.; Maia, C.; Brazão Farinha, C.; Brito, J.; Veiga, R. (2019) Rendering mortars with incorporation of very fine aggregates from construction and demolition waste. Constr. Build. Mater. 229, 116844.

Ferreira, R.L.S.; Anjos, M.A.S.; Nóbrega, A.K.C.; Pereira, J.E.S.; Ledesma, E.F. (2019) The role of powder content of the recycled aggregates of CDW in the behaviour of rendering mortars Constr. Build. Mater. 208, 601–612.

Deer, R. (2021) Styrofoam an environmental problem? RoadRunner. Retrieved from

EPA. (2022) Containers and packaging United States Environmental Protection Agency. Retrieved from

Cácerres, M.A.; Sánchez, M.; Soto, M.; Maspoch, L.; Sánchez Hernández, M.; Sánchez Rojo, A. (2015) Desarrollo de un proceso de reciclaje para la fracción mixta de residuos de plástico, provenientes de plantas de separación selectiva. in II Congrés UPC Sostenible. Retrieved from

World centric for a better world (2019) Impacts and risks of polystyrene.

Morales, M.P.; Muñoz, P.; Juárez, M.C.; Mendívil, M.A.; Olasolo, P. (2016). Influence of the type of lightweight clay brick on the equivalent thermal transmittance of different types of façades on buildings. Mater. Construcc. 66 [323], e096.

Gencel, O.; Coz Diaz, J.J.; Stcu, M.; Koksal, F.; Alvarez, F.P.; Martinez-Barrera, G.; Brostow, W. (2014) Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy Build. 70, 135–144.

Binici, H.; Aksogan, O.; Dıncer, A.; Luga, E.; Eken, M.; Isikaltun, O. (2020) The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production. Therm. Sci. Eng. Prog. 18 [21], 100567.

Fernández, D.; Yedra, E.; Morón, C.; Zaragoza, A.; Kosior-Kazberuk, M. (2022) Circular building process: reuse of insulators from construction and demolition waste to produce lime mortars. Buildings. 12 [2], 220.

Villaquirán-Caicedo, M.A.; Perea, V.N.; Ruiz, J.E.; Mejía de Gutiérrez, R. (2022) Mechanical, physical and thermoacoustic properties of lightweight composite geopolymers Propiedades mecánicas, físicas y termoacústicas de geopolímeros compuestos aligerados. Ingen. Compet. 24 [1], 1–21.

Oliveira, K.A.; Oliveira, C.A.B.; Molina, J.C. (2021) Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum. Mater. Construcc. 71 [341], e242.

Fraile-Garcia, E.; Ferreiro-Cabello, J.; Defez, B.; Peris-Fajanes, G. (2016) Acoustic behavior of hollow blocks and bricks made of concrete doped with waste-tire rubber. Mater. 9 [12], 962.

Holmes, N.; Browne, A; Montague, C. (2014) Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 73, 195–204.

Orrego Gonzáles, A.; Ealo Cuello, J.L.; Pazos Ospina, J.F. (2018) Low-cost and easily implemented anechoic acoustic chambers. Sci. Tech. 23 [4], 471–478.

Ferreira, R.L.S.; Anjos, M.A.S.; Maia, C.; Pinto, L.; Azevedo, A.R.; Brito, J. (2021) Long-term analysis of the physical properties of the mixed recycled aggregate and their effect on the properties of mortars. Constr. Build. Mater. 274, 121796.

Bonifazi, G.; Palmieri, R; Serranti, S. (2018) Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging. Constr. Build. Mater. 169, 835–842.

Kim, J. (2022) Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview. Constr. Build. Mater. 328, 127071.

Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. (2016) Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 112, 716–724.

Zawrah, M.F.; Gado, R.A.; Feltin, N.; Ducourtieux, S.; Devoille, L. (2016) Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf. Environ. Prot. 103, 237–251.

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321], e075.

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: Ceramic masonry waste. J. Clean. Prod. 87 [1], 692–706.

Bumanis, G.; Pavils, P.; Sahmenko, G.; Mironovs, D.; Rucevskis, S.; Korjakins, A.; Bajare, D. (2023) Thermal and sound insulation properties of recycled expanded polystyrene granule and gypsum composites. Recycling. 8 [1], 19.

Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. (2016). Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Clean. Prod. 118, 162–169.

Patra, I.; Al-Awsi, G.R.L.; Hasan, Y.M.; Almotlaq, S.S.K. (2022) Mechanical properties of concrete containing recycled aggregate from construction waste. Sustain. Energy Technol. Assessments. 53, 102722.

Fernández, D.; Álvarez, M.; Saiz, P.; Zaragoza, A. (2022) Experimental study with plaster mortars made with recycled aggregate and thermal insulation residues for application in building. Sustain. 14 [4], 2386.

Villaquirán-Caicedo, M.A.; Mejía de Gutierrez, R.; Sulekar, S.; Davis, C.; Nino, J. (2015) Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources Appl. Clay Sci. 118, 276–282.

Chindaprasirt, P. (2022) Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate. J. Build. Eng. 60, 105178.

Balaji, N.C.; Mani, M.; Reddy, B.V. (2013) Thermal performance of the building walls. In 1st IBPSA Italy Conference Free University of Bozen-Bolzano. 346, 1–8. Retrieved from

Serna Jara, L.M. (2016) Research study against high intensity fireworks for pipeline conductions in the petrochemical industry. Rev. Dr. UMH, 2 [1], 1–10. Retrieved from

Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, J. (2012) Porous alumina and zirconia ceramics with tailored thermal conductivity. J. Phys. Conf. Ser. 395, 012022.

Moretti, E.; Belloni, E.; Agosti, F. (2016) Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization. Appl. Energy, 169, 421–432.



How to Cite

Acevedo-Sánchez, C., Villaquirán-Caicedo, M., & Marmolejo-Rebellón, L. (2023). Recycling of eps foam and demolition wastes in the preparation of ecofriendly render mortars with thermal-acoustic insulation properties. Materiales De Construcción, 73(351), e317.



Research Articles