Recycling of eps foam and demolition wastes in the preparation of ecofriendly render mortars with thermal-acoustic insulation properties

Authors

DOI:

https://doi.org/10.3989/mc.2023.342422

Keywords:

Interior render mortar, Composite, Demolition waste, Recycling, Circular economy

Abstract


The design of render-mortars from construction and demolition waste (CDW) was evaluated. Fine aggregates from red-clay-brick waste, mortar and concrete waste were used, together with recycled expanded-polystyrene (EPS) as lightweight filler. Mixes composed of 70%-recycled aggregates, and 30% consisting of a matrix of Portland cement were produced. Characterization tests were conducted on the physical, mechanical, thermal, and acoustic properties. The render-mortar A4, A7 and A9 can be classified according to compressive strength results as CSI-W0 for interior use under standard UNE-EN-998-1. The A7 mortar, with the best physical and mechanical results, contained 21% EPS, 17.5% brick waste and 17.5% mortar waste. Mix A4 obtained the lowest thermal conductivity, 0.12 W/m·K - a reduction of 79% compared to the commercial-mortar AC1. The acoustic absorption properties were also enhanced by the incorporation of EPS, such that the A4, A7, and A9 mixes were identified as Absorbent for the frequencies of 2000 Hz and 4000 Hz.

Downloads

Download data is not yet available.

References

Duan, P.; Song, L.; Yan, C.; Ren, D.; Li, Z. (2017) Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram. Int. 43 [6], 5115-5120. https://doi.org/10.1016/j.ceramint.2017.01.025

Domínguez, A.; Domínguez, M.I.; Ivanova, S.; Centeno, M.A.; Odriozola, J.A. (2016) Recycling of construction and demolition waste generated by building infrastructure for the production of glassy materials. Ceram. Int. 42 [14], 15217-15223. https://doi.org/10.1016/j.ceramint.2016.06.157

Aghdam, K.A.; Rad, A.F.; Shakeri, H.; Sardroud, J.M. (2018) Approaching green buildings using eco-efficient construction materials: a review of the state-of-the-art. J. Constr. Eng. Proj. Manag. 8 [3], 1-23.

Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. (2019) Status quo and future directions of construction and demolition waste research: A critical review. J. Clean. Prod. 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163

Akhtar, A.; Sarmah, A.K. (2018) Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 186, 262-281. https://doi.org/10.1016/j.jclepro.2018.03.085

Wang, X.; Yu, R.; Shui, Z.; Song, Q.; Liu, Z.; Bao, M.; Liu, Z.; Wu, S. (2019) Optimized treatment of recycled construction and demolition waste in developing sustainable ultra-high performance concrete. J. Clean. Prod. 221, 805-816. https://doi.org/10.1016/j.jclepro.2019.02.201

Vincent, T.; Guy, M.; Louis-César, P.; Jean-François, B.; Richard, M. (2022) Physical process to sort construction and demolition waste (C&DW) fines components using process water. Waste Manag. 143, 125-134. https://doi.org/10.1016/j.wasman.2022.02.012 PMid:35240448

RMCDQ. (2017) Évaluation des alternatives de valorisation des résidus de criblage fin issus des centres de tri des débris de construction, de rénovation et de démolition. Quebec. Retrieved from www.3rmcdq.qc.ca.

Reciclados Industriales. Bogotá. (2019) Retrieved from https://recicladosindustriales.co/.

Ecotech, G. CDW Disposal System GEPECOTECH. (2022). Retrieved from https://www.gepecotech.com/solution/construction-demolition-waste-system.html?utm_source=google&utm_medium=g&utm_campaign=cdwaste&utm_content=649540851337&utm_term=demolition_wasterecycling&match=p&item=&target=kwd-3920165559&device=c&gclid=CjwKCAjwiOCgB.

Şimşek, O.; Pourghadri H.; Gökçe, H.S. (2022) Performance of fly ash-blended Portland cement concrete developed by using fine or coarse recycled concrete aggregate. Constr. Build. Mater. 357, 129431. https://doi.org/10.1016/j.conbuildmat.2022.129431

Ferreira, R.L.S.; Anjos, M.A.S.; Ledesma, E.F.; Pereira, J.E.S. and Nóbrega, A.K.C. (2020) Evaluation of the physical-mechanical properties of cement-lime based masonry mortars produced with mixed recycled aggregates. Mater. Constr. 70 [337], e210. https://doi.org/10.3989/mc.2020.02819

López Ruiz, L.A.; Roca Ramón, X.; Gassó Domingo, S. (2020) The circular economy in the construction and demolition waste sector - A review and an integrative model approach. J. Clean. Prod. 248, 119238. https://doi.org/10.1016/j.jclepro.2019.119238

Kumar, G.; Shrivastava, S.; Gupta, R.C. (2020) Paver blocks manufactured from construction & demolition waste. Mater. Today Proc. 27, 311-317. https://doi.org/10.1016/j.matpr.2019.11.039

Garg, N.; Shrivastava, S. (2022) A review on utilization of recycled concrete aggregates (RCA) and ceramic fines in mortar application. Mater. Today Proc. 73, 64-73. https://doi.org/10.1016/j.matpr.2022.09.226

Miranda, L.F.R.; Selmo, S.M.S. (2006) CDW recycled aggregate renderings: Part I - Analysis of the effect of materials finer than 75 μm on mortar properties. Constr. Build. Mater. 20 [9], 615-624. https://doi.org/10.1016/j.conbuildmat.2005.02.025

Braga, M.; Brito, J.; Veiga, R. (2012) Incorporation of fine concrete aggregates in mortars. Constr. Build. Mater. 36, 960-968. https://doi.org/10.1016/j.conbuildmat.2012.06.031

Silva, R.V.; Brito, J.; Dhir, R.K. (2016) Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Constr. Build. Mater. 105, 400-415. https://doi.org/10.1016/j.conbuildmat.2015.12.171

Jesus, S.; Maia, C.; Brazão Farinha, C.; Brito, J.; Veiga, R. (2019) Rendering mortars with incorporation of very fine aggregates from construction and demolition waste. Constr. Build. Mater. 229, 116844. https://doi.org/10.1016/j.conbuildmat.2019.116844

Ferreira, R.L.S.; Anjos, M.A.S.; Nóbrega, A.K.C.; Pereira, J.E.S.; Ledesma, E.F. (2019) The role of powder content of the recycled aggregates of CDW in the behaviour of rendering mortars Constr. Build. Mater. 208, 601-612. https://doi.org/10.1016/j.conbuildmat.2019.03.058

Deer, R. (2021) Styrofoam an environmental problem? RoadRunner. Retrieved from https://www.roadrunnerwm.com/blog/styrofoam-problems-and-how-to-help#:%7E:text=Most_recycling_facilities_are_unable_is_time_consuming_and_expensive.

EPA. (2022) Containers and packaging United States Environmental Protection Agency. Retrieved from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/containers-and-packaging-product-specific.

Cácerres, M.A.; Sánchez, M.; Soto, M.; Maspoch, L.; Sánchez Hernández, M.; Sánchez Rojo, A. (2015) Desarrollo de un proceso de reciclaje para la fracción mixta de residuos de plástico, provenientes de plantas de separación selectiva. in II Congrés UPC Sostenible. Retrieved from https://upcommons.upc.edu/handle/2099/8207?show=full.

World centric for a better world (2019) Impacts and risks of polystyrene. https://www.worldcentric.com/journal/impacts-and-risks-of-styrofoam.

Morales, M.P.; Muñoz, P.; Juárez, M.C.; Mendívil, M.A.; Olasolo, P. (2016). Influence of the type of lightweight clay brick on the equivalent thermal transmittance of different types of façades on buildings. Mater. Construcc. 66 [323], e096. https://doi.org/10.3989/mc.2016.08115

Gencel, O.; Coz Diaz, J.J.; Stcu, M.; Koksal, F.; Alvarez, F.P.; Martinez-Barrera, G.; Brostow, W. (2014) Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy Build. 70, 135-144. https://doi.org/10.1016/j.enbuild.2013.11.047

Binici, H.; Aksogan, O.; Dıncer, A.; Luga, E.; Eken, M.; Isikaltun, O. (2020) The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production. Therm. Sci. Eng. Prog. 18 [21], 100567. https://doi.org/10.1016/j.tsep.2020.100567

Fernández, D.; Yedra, E.; Morón, C.; Zaragoza, A.; Kosior-Kazberuk, M. (2022) Circular building process: reuse of insulators from construction and demolition waste to produce lime mortars. Buildings. 12 [2], 220. https://doi.org/10.3390/buildings12020220

Villaquirán-Caicedo, M.A.; Perea, V.N.; Ruiz, J.E.; Mejía de Gutiérrez, R. (2022) Mechanical, physical and thermoacoustic properties of lightweight composite geopolymers Propiedades mecánicas, físicas y termoacústicas de geopolímeros compuestos aligerados. Ingen. Compet. 24 [1], 1-21. https://doi.org/10.25100/iyc.v24i1.10985

Oliveira, K.A.; Oliveira, C.A.B.; Molina, J.C. (2021) Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum. Mater. Construcc. 71 [341], e242. https://doi.org/10.3989/mc.2021.07520

Fraile-Garcia, E.; Ferreiro-Cabello, J.; Defez, B.; Peris-Fajanes, G. (2016) Acoustic behavior of hollow blocks and bricks made of concrete doped with waste-tire rubber. Mater. 9 [12], 962. https://doi.org/10.3390/ma9120962 PMid:28774084 PMCid:PMC5456962

Holmes, N.; Browne, A; Montague, C. (2014) Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 73, 195-204. https://doi.org/10.1016/j.conbuildmat.2014.09.107

Orrego Gonzáles, A.; Ealo Cuello, J.L.; Pazos Ospina, J.F. (2018) Low-cost and easily implemented anechoic acoustic chambers. Sci. Tech. 23 [4], 471-478.

Ferreira, R.L.S.; Anjos, M.A.S.; Maia, C.; Pinto, L.; Azevedo, A.R.; Brito, J. (2021) Long-term analysis of the physical properties of the mixed recycled aggregate and their effect on the properties of mortars. Constr. Build. Mater. 274, 121796. https://doi.org/10.1016/j.conbuildmat.2020.121796

Bonifazi, G.; Palmieri, R; Serranti, S. (2018) Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging. Constr. Build. Mater. 169, 835-842. https://doi.org/10.1016/j.conbuildmat.2018.03.048

Kim, J. (2022) Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview. Constr. Build. Mater. 328, 127071. https://doi.org/10.1016/j.conbuildmat.2022.127071

Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. (2016) Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 112, 716-724. https://doi.org/10.1016/j.conbuildmat.2016.02.218

Zawrah, M.F.; Gado, R.A.; Feltin, N.; Ducourtieux, S.; Devoille, L. (2016) Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf. Environ. Prot. 103, 237-251. https://doi.org/10.1016/j.psep.2016.08.001

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321], e075. https://doi.org/10.3989/mc.2016.08414

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: Ceramic masonry waste. J. Clean. Prod. 87 [1], 692-706. https://doi.org/10.1016/j.jclepro.2014.10.084

Bumanis, G.; Pavils, P.; Sahmenko, G.; Mironovs, D.; Rucevskis, S.; Korjakins, A.; Bajare, D. (2023) Thermal and sound insulation properties of recycled expanded polystyrene granule and gypsum composites. Recycling. 8 [1], 19. https://doi.org/10.3390/recycling8010019

Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. (2016). Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Clean. Prod. 118, 162-169. https://doi.org/10.1016/j.jclepro.2016.01.059

Patra, I.; Al-Awsi, G.R.L.; Hasan, Y.M.; Almotlaq, S.S.K. (2022) Mechanical properties of concrete containing recycled aggregate from construction waste. Sustain. Energy Technol. Assessments. 53, 102722. https://doi.org/10.1016/j.seta.2022.102722

Fernández, D.; Álvarez, M.; Saiz, P.; Zaragoza, A. (2022) Experimental study with plaster mortars made with recycled aggregate and thermal insulation residues for application in building. Sustain. 14 [4], 2386. https://doi.org/10.3390/su14042386

Villaquirán-Caicedo, M.A.; Mejía de Gutierrez, R.; Sulekar, S.; Davis, C.; Nino, J. (2015) Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources Appl. Clay Sci. 118, 276-282. https://doi.org/10.1016/j.clay.2015.10.005

Chindaprasirt, P. (2022) Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate. J. Build. Eng. 60, 105178. https://doi.org/10.1016/j.jobe.2022.105178

Balaji, N.C.; Mani, M.; Reddy, B.V. (2013) Thermal performance of the building walls. In 1st IBPSA Italy Conference Free University of Bozen-Bolzano. 346, 1-8. Retrieved from http://www.ibpsa.org/bsa-2013-bozen-bolzano-italy-conference-proceedings/.

Serna Jara, L.M. (2016) Research study against high intensity fireworks for pipeline conductions in the petrochemical industry. Rev. Dr. UMH, 2 [1], 1-10. Retrieved from https://revistas.innovacionumh.es/index.php/doctorado/article/view/615/966.

Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, J. (2012) Porous alumina and zirconia ceramics with tailored thermal conductivity. J. Phys. Conf. Ser. 395, 012022. https://doi.org/10.1088/1742-6596/395/1/012022

Moretti, E.; Belloni, E.; Agosti, F. (2016) Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization. Appl. Energy, 169, 421-432. https://doi.org/10.1016/j.apenergy.2016.02.048

Published

2023-08-09

How to Cite

Acevedo-Sánchez, C., Villaquirán-Caicedo, M., & Marmolejo-Rebellón, L. (2023). Recycling of eps foam and demolition wastes in the preparation of ecofriendly render mortars with thermal-acoustic insulation properties. Materiales De Construcción, 73(351), e317. https://doi.org/10.3989/mc.2023.342422

Issue

Section

Research Articles