Reciclado de espuma de EPS y residuos de construcción y demolición en la preparación de morteros de revestimiento eco-amigables con propiedades termo-acústicas

Autores/as

DOI:

https://doi.org/10.3989/mc.2023.342422

Palabras clave:

Mortero de interior, Compuesto, Residuos de demolición, Reciclaje, Económica circular

Resumen


Se evaluó el diseño de morteros de revestimiento a partir de residuos de demolición. Áridos finos obtenidos a partir de residuos de ladrillos de arcilla cocida, morteros y hormigones se usaron en conjunto con árido ligero de espuma de poliestireno expandido (EPS). Se obtuvieron mezclas compuestas de 70%de agregado reciclado y 30% de matriz de cemento portland, y se desarrollaron pruebas de caracterización físicas, mecánicas, térmicas y acústicas. Los morteros A4, A7 y A9 pueden clasificarse como tipo CSI-W0 para uso interior acorde con la norma UNE-EN-998-1. El mortero A7, con mejores resultados físicos y mecánicos contiene 21% EPS, 17.5% residuos de ladrillo, y 17.5% residuos de mortero. La mezcla A4 obtuvo la más baja conductividad térmica, 0.12 W/m·K - una reducción del 79% comparada con el mortero comercial AC1. La capacidad de absorción acústica también se mejoró por la incorporación de EPS y las mezclas A4, A7 y A9 fueron identificadas como absorbentes para frecuencias entre 2000 - 4000 Hz.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Duan, P.; Song, L.; Yan, C.; Ren, D.; Li, Z. (2017) Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram. Int. 43 [6], 5115-5120. https://doi.org/10.1016/j.ceramint.2017.01.025

Domínguez, A.; Domínguez, M.I.; Ivanova, S.; Centeno, M.A.; Odriozola, J.A. (2016) Recycling of construction and demolition waste generated by building infrastructure for the production of glassy materials. Ceram. Int. 42 [14], 15217-15223. https://doi.org/10.1016/j.ceramint.2016.06.157

Aghdam, K.A.; Rad, A.F.; Shakeri, H.; Sardroud, J.M. (2018) Approaching green buildings using eco-efficient construction materials: a review of the state-of-the-art. J. Constr. Eng. Proj. Manag. 8 [3], 1-23.

Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. (2019) Status quo and future directions of construction and demolition waste research: A critical review. J. Clean. Prod. 240, 118163. https://doi.org/10.1016/j.jclepro.2019.118163

Akhtar, A.; Sarmah, A.K. (2018) Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 186, 262-281. https://doi.org/10.1016/j.jclepro.2018.03.085

Wang, X.; Yu, R.; Shui, Z.; Song, Q.; Liu, Z.; Bao, M.; Liu, Z.; Wu, S. (2019) Optimized treatment of recycled construction and demolition waste in developing sustainable ultra-high performance concrete. J. Clean. Prod. 221, 805-816. https://doi.org/10.1016/j.jclepro.2019.02.201

Vincent, T.; Guy, M.; Louis-César, P.; Jean-François, B.; Richard, M. (2022) Physical process to sort construction and demolition waste (C&DW) fines components using process water. Waste Manag. 143, 125-134. https://doi.org/10.1016/j.wasman.2022.02.012 PMid:35240448

RMCDQ. (2017) Évaluation des alternatives de valorisation des résidus de criblage fin issus des centres de tri des débris de construction, de rénovation et de démolition. Quebec. Retrieved from www.3rmcdq.qc.ca.

Reciclados Industriales. Bogotá. (2019) Retrieved from https://recicladosindustriales.co/.

Ecotech, G. CDW Disposal System GEPECOTECH. (2022). Retrieved from https://www.gepecotech.com/solution/construction-demolition-waste-system.html?utm_source=google&utm_medium=g&utm_campaign=cdwaste&utm_content=649540851337&utm_term=demolition_wasterecycling&match=p&item=&target=kwd-3920165559&device=c&gclid=CjwKCAjwiOCgB.

Şimşek, O.; Pourghadri H.; Gökçe, H.S. (2022) Performance of fly ash-blended Portland cement concrete developed by using fine or coarse recycled concrete aggregate. Constr. Build. Mater. 357, 129431. https://doi.org/10.1016/j.conbuildmat.2022.129431

Ferreira, R.L.S.; Anjos, M.A.S.; Ledesma, E.F.; Pereira, J.E.S. and Nóbrega, A.K.C. (2020) Evaluation of the physical-mechanical properties of cement-lime based masonry mortars produced with mixed recycled aggregates. Mater. Constr. 70 [337], e210. https://doi.org/10.3989/mc.2020.02819

López Ruiz, L.A.; Roca Ramón, X.; Gassó Domingo, S. (2020) The circular economy in the construction and demolition waste sector - A review and an integrative model approach. J. Clean. Prod. 248, 119238. https://doi.org/10.1016/j.jclepro.2019.119238

Kumar, G.; Shrivastava, S.; Gupta, R.C. (2020) Paver blocks manufactured from construction & demolition waste. Mater. Today Proc. 27, 311-317. https://doi.org/10.1016/j.matpr.2019.11.039

Garg, N.; Shrivastava, S. (2022) A review on utilization of recycled concrete aggregates (RCA) and ceramic fines in mortar application. Mater. Today Proc. 73, 64-73. https://doi.org/10.1016/j.matpr.2022.09.226

Miranda, L.F.R.; Selmo, S.M.S. (2006) CDW recycled aggregate renderings: Part I - Analysis of the effect of materials finer than 75 μm on mortar properties. Constr. Build. Mater. 20 [9], 615-624. https://doi.org/10.1016/j.conbuildmat.2005.02.025

Braga, M.; Brito, J.; Veiga, R. (2012) Incorporation of fine concrete aggregates in mortars. Constr. Build. Mater. 36, 960-968. https://doi.org/10.1016/j.conbuildmat.2012.06.031

Silva, R.V.; Brito, J.; Dhir, R.K. (2016) Performance of cementitious renderings and masonry mortars containing recycled aggregates from construction and demolition wastes. Constr. Build. Mater. 105, 400-415. https://doi.org/10.1016/j.conbuildmat.2015.12.171

Jesus, S.; Maia, C.; Brazão Farinha, C.; Brito, J.; Veiga, R. (2019) Rendering mortars with incorporation of very fine aggregates from construction and demolition waste. Constr. Build. Mater. 229, 116844. https://doi.org/10.1016/j.conbuildmat.2019.116844

Ferreira, R.L.S.; Anjos, M.A.S.; Nóbrega, A.K.C.; Pereira, J.E.S.; Ledesma, E.F. (2019) The role of powder content of the recycled aggregates of CDW in the behaviour of rendering mortars Constr. Build. Mater. 208, 601-612. https://doi.org/10.1016/j.conbuildmat.2019.03.058

Deer, R. (2021) Styrofoam an environmental problem? RoadRunner. Retrieved from https://www.roadrunnerwm.com/blog/styrofoam-problems-and-how-to-help#:%7E:text=Most_recycling_facilities_are_unable_is_time_consuming_and_expensive.

EPA. (2022) Containers and packaging United States Environmental Protection Agency. Retrieved from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/containers-and-packaging-product-specific.

Cácerres, M.A.; Sánchez, M.; Soto, M.; Maspoch, L.; Sánchez Hernández, M.; Sánchez Rojo, A. (2015) Desarrollo de un proceso de reciclaje para la fracción mixta de residuos de plástico, provenientes de plantas de separación selectiva. in II Congrés UPC Sostenible. Retrieved from https://upcommons.upc.edu/handle/2099/8207?show=full.

World centric for a better world (2019) Impacts and risks of polystyrene. https://www.worldcentric.com/journal/impacts-and-risks-of-styrofoam.

Morales, M.P.; Muñoz, P.; Juárez, M.C.; Mendívil, M.A.; Olasolo, P. (2016). Influence of the type of lightweight clay brick on the equivalent thermal transmittance of different types of façades on buildings. Mater. Construcc. 66 [323], e096. https://doi.org/10.3989/mc.2016.08115

Gencel, O.; Coz Diaz, J.J.; Stcu, M.; Koksal, F.; Alvarez, F.P.; Martinez-Barrera, G.; Brostow, W. (2014) Properties of gypsum composites containing vermiculite and polypropylene fibers: Numerical and experimental results. Energy Build. 70, 135-144. https://doi.org/10.1016/j.enbuild.2013.11.047

Binici, H.; Aksogan, O.; Dıncer, A.; Luga, E.; Eken, M.; Isikaltun, O. (2020) The possibility of vermiculite, sunflower stalk and wheat stalk using for thermal insulation material production. Therm. Sci. Eng. Prog. 18 [21], 100567. https://doi.org/10.1016/j.tsep.2020.100567

Fernández, D.; Yedra, E.; Morón, C.; Zaragoza, A.; Kosior-Kazberuk, M. (2022) Circular building process: reuse of insulators from construction and demolition waste to produce lime mortars. Buildings. 12 [2], 220. https://doi.org/10.3390/buildings12020220

Villaquirán-Caicedo, M.A.; Perea, V.N.; Ruiz, J.E.; Mejía de Gutiérrez, R. (2022) Mechanical, physical and thermoacoustic properties of lightweight composite geopolymers Propiedades mecánicas, físicas y termoacústicas de geopolímeros compuestos aligerados. Ingen. Compet. 24 [1], 1-21. https://doi.org/10.25100/iyc.v24i1.10985

Oliveira, K.A.; Oliveira, C.A.B.; Molina, J.C. (2021) Lightweight recycled gypsum with residues of expanded polystyrene and cellulose fiber to improve thermal properties of gypsum. Mater. Construcc. 71 [341], e242. https://doi.org/10.3989/mc.2021.07520

Fraile-Garcia, E.; Ferreiro-Cabello, J.; Defez, B.; Peris-Fajanes, G. (2016) Acoustic behavior of hollow blocks and bricks made of concrete doped with waste-tire rubber. Mater. 9 [12], 962. https://doi.org/10.3390/ma9120962 PMid:28774084 PMCid:PMC5456962

Holmes, N.; Browne, A; Montague, C. (2014) Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 73, 195-204. https://doi.org/10.1016/j.conbuildmat.2014.09.107

Orrego Gonzáles, A.; Ealo Cuello, J.L.; Pazos Ospina, J.F. (2018) Low-cost and easily implemented anechoic acoustic chambers. Sci. Tech. 23 [4], 471-478.

Ferreira, R.L.S.; Anjos, M.A.S.; Maia, C.; Pinto, L.; Azevedo, A.R.; Brito, J. (2021) Long-term analysis of the physical properties of the mixed recycled aggregate and their effect on the properties of mortars. Constr. Build. Mater. 274, 121796. https://doi.org/10.1016/j.conbuildmat.2020.121796

Bonifazi, G.; Palmieri, R; Serranti, S. (2018) Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging. Constr. Build. Mater. 169, 835-842. https://doi.org/10.1016/j.conbuildmat.2018.03.048

Kim, J. (2022) Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview. Constr. Build. Mater. 328, 127071. https://doi.org/10.1016/j.conbuildmat.2022.127071

Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. (2016) Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 112, 716-724. https://doi.org/10.1016/j.conbuildmat.2016.02.218

Zawrah, M.F.; Gado, R.A.; Feltin, N.; Ducourtieux, S.; Devoille, L. (2016) Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process Saf. Environ. Prot. 103, 237-251. https://doi.org/10.1016/j.psep.2016.08.001

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Corinaldesi, V.; Iglesias-Godino, F.J. (2016) A proposal for the maximum use of recycled concrete sand in masonry mortar design. Mater. Construcc. 66 [321], e075. https://doi.org/10.3989/mc.2016.08414

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: Ceramic masonry waste. J. Clean. Prod. 87 [1], 692-706. https://doi.org/10.1016/j.jclepro.2014.10.084

Bumanis, G.; Pavils, P.; Sahmenko, G.; Mironovs, D.; Rucevskis, S.; Korjakins, A.; Bajare, D. (2023) Thermal and sound insulation properties of recycled expanded polystyrene granule and gypsum composites. Recycling. 8 [1], 19. https://doi.org/10.3390/recycling8010019

Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. (2016). Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Clean. Prod. 118, 162-169. https://doi.org/10.1016/j.jclepro.2016.01.059

Patra, I.; Al-Awsi, G.R.L.; Hasan, Y.M.; Almotlaq, S.S.K. (2022) Mechanical properties of concrete containing recycled aggregate from construction waste. Sustain. Energy Technol. Assessments. 53, 102722. https://doi.org/10.1016/j.seta.2022.102722

Fernández, D.; Álvarez, M.; Saiz, P.; Zaragoza, A. (2022) Experimental study with plaster mortars made with recycled aggregate and thermal insulation residues for application in building. Sustain. 14 [4], 2386. https://doi.org/10.3390/su14042386

Villaquirán-Caicedo, M.A.; Mejía de Gutierrez, R.; Sulekar, S.; Davis, C.; Nino, J. (2015) Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources Appl. Clay Sci. 118, 276-282. https://doi.org/10.1016/j.clay.2015.10.005

Chindaprasirt, P. (2022) Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate. J. Build. Eng. 60, 105178. https://doi.org/10.1016/j.jobe.2022.105178

Balaji, N.C.; Mani, M.; Reddy, B.V. (2013) Thermal performance of the building walls. In 1st IBPSA Italy Conference Free University of Bozen-Bolzano. 346, 1-8. Retrieved from http://www.ibpsa.org/bsa-2013-bozen-bolzano-italy-conference-proceedings/.

Serna Jara, L.M. (2016) Research study against high intensity fireworks for pipeline conductions in the petrochemical industry. Rev. Dr. UMH, 2 [1], 1-10. Retrieved from https://revistas.innovacionumh.es/index.php/doctorado/article/view/615/966.

Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, J. (2012) Porous alumina and zirconia ceramics with tailored thermal conductivity. J. Phys. Conf. Ser. 395, 012022. https://doi.org/10.1088/1742-6596/395/1/012022

Moretti, E.; Belloni, E.; Agosti, F. (2016) Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization. Appl. Energy, 169, 421-432. https://doi.org/10.1016/j.apenergy.2016.02.048

Publicado

2023-08-09

Cómo citar

Acevedo-Sánchez, C., Villaquirán-Caicedo, M., & Marmolejo-Rebellón, L. (2023). Reciclado de espuma de EPS y residuos de construcción y demolición en la preparación de morteros de revestimiento eco-amigables con propiedades termo-acústicas. Materiales De Construcción, 73(351), e317. https://doi.org/10.3989/mc.2023.342422

Número

Sección

Artículos