Comparing the effects of jouravskite and ettringite on the hydration of the clinker
DOI:
https://doi.org/10.3989/mc.2023.300222Keywords:
Jouravskite, Ettringite, Clinker, Hydration, Sulfate solutionAbstract
Manganese enters the clinker from alternative fuel and alternative raw materials. It is present in the iron ores utilized in the cement burning and is found in the slags employed as supplementary cement materials. The jouravskite, as a member of the ettringite family, may form in limestone cement when exposed to sulfate media. To understand its effect on the hydration process, the expansion of small cylindrical clinker pastes doped with synthesized jouravskite and ettringite in magnesium sulfate solutions was measured with a micrometer; and the compressive strength of representative cubes was monitored. The phases formed were characterized by means of X-ray diffraction, infrared spectroscopy and scanning electron microscopy. The jouravskite is found to be a strong retarder for clinker hydration probably due to its adsorption on the cement hydrates.
Downloads
References
Global Waste Statistics (2022) Waste Statistics / By Cheapa Waste.
Chaterjee, A.; Sui, T. (2019) Alternative fuels-Effects on clinker process and properties. Cem. Concr. Res. 123, 105777. https://doi.org/10.1016/j.cemconres.2019.105777
Shimosaka, K.; Inoue, T.; Tanaka, H.; Kishimoto, Y. (2007) Influence of minor elements in clinker on the properties of cement:a new approach for application to commercial cement manufacturing. Trans. Mater. Res. Soc. Japan. 32 [3], 647-652. https://doi.org/10.14723/tmrsj.32.647
Achternbosch, M.; Bräutigam, K.R.; Hartlieb, N.; Kupsch, C.M.; Richers, U.; Stemmermann, P.; Gleis, M. (2003) Heavy metals in cement and concrete resulting from the co-incineration of wastes in cement kilns with regard to the legitimacy of waste utilisation. Karlsruhe: Forschungszentrum Karlsruhe GmbH.
Ludwig, H.M.; Zhang, W. (2015) Research review of cement clinker chemistry. Cem. Concr. Res. 78, 24-37. https://doi.org/10.1016/j.cemconres.2015.05.018
Lea, F.M. (1970) The Chemistry of Cement and Concrete. 3rd Edition, Edward Arnold Ltd. London. 76 (1970).
Saidi, I.; Ben Abdelmalek, J.; Ben Said, O.; Chicharo, L.; Beyrem, H. (2020) Chemical composition and heavy metal content of portland cement in northern tunisia. Iran. J. Chem. Chem. Eng. (IJCCE). 39 [3], 147-158.
Nath, S.K.; Randhawa, N.S.; Kumar, S. (2022) A review on characteristics of silico-manganese slag and its utilization into construction materials. Resour. Conserv. Recycl. 176, 105946. https://doi.org/10.1016/j.resconrec.2021.105946
Saly, F.; Guo, L.; Ma, R.; Gu, C.; Sun, W. (2018) Properties of steel slag and stainlesssteel slag as cement replacement materials: a comparative study. J. Wuhan Univ. Technol. Mater. Sci. Ed. 33 [6], 1444-1451. https://doi.org/10.1007/s11595-018-1989-3
Anjali, P.; Sajitha Beegom, A. (2022) A study on the utilization of activated steel slag as partial replacement of cement in concrete. Int. J. Eng. Res. Technol (IJERT). 11 [01].
Wulfert, H.; Keyssner, M.; Ludwig, H.M.; Adamczyk, B. (2013) Metal recovery and conversion of steel slag into highly reactive cement components. ZKG. Int Deutsch-englische Ausgabe. 9, 34-40 (1995).
Puertas, F.; Glasser, F.P.; Blanco-Varela, M.T.; Vaquez, T. (1988) Influence of the kiln atmosphere on manganese solid solution in Ca3SiO5 and CA2SiO4. Cem. Concr. Res. 18 [5], 783-788. https://doi.org/10.1016/0008-8846(88)90103-2
Puertas, F.; Blanco, M.T.; Vázquez, T. (1989) Manganese substitutions into the portland cement clinker phases. Mater. Construcc. 39 [214], 19-30. https://doi.org/10.3989/mc.1989.v39.i214.806
Puertas, F.; Varela, M.B.; Dominguez, R. (1990) Characterization of Ca2AlMnO5. A comparative study between Ca2AlMnO5 and Ca2AlFeO5. Cem. Concr. Res. 20 [3], 429-438. https://doi.org/10.1016/0008-8846(90)90033-T
Diouri, A.; Boukhari, A.; Aride, J.; Puertas, F.; Vázquez, T. (1997) Stable Ca3SiO5 solid solution containing manganese and phosphorus. Cem. Concr. Res. 27 [8], 1203-1212. https://doi.org/10.1016/S0008-8846(97)00110-5
Tao, Y.; Zhang, W.; Shang, D.; Xia, Z.; Li, N.; Ching, W.Y.; Hu, S. (2018) Comprehending the occupying preference of manganese substitution in crystalline cement clinker phases: A theoretical study. Cem. Concr. Res. 109, 19-29. https://doi.org/10.1016/j.cemconres.2018.04.003
Lea's. (1998) Chemistry of cement and concrete. fourth edition. ISBN 0340 565896. Reprinted by Butterworth-Heinemann.
Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. (1999) Advanced inorganic chemistry. John Wiley and Sons, Inc.
Jouravskite: Mineral information, data and localities.
Chukanov, N.V.; Zubkova, N.V.; Pautov, L.A.; Göttlicher, J.; Kasatkin, A.V.; Van, K.V.; Pushcharovsky, D.Y. (2019). Jouravskite: refined data on the crystal structure, chemical composition and spectroscopic properties. Phys. Chem. Miner. 46 [4], 417-425. https://doi.org/10.1007/s00269-018-1012-8
Mohamed, M.K.M. (2022) Studies on some important salts formed in Portland cement: Thaumasite and ettringite-similar phases. Ph.D. Thesis, Helwan University Cairo Egypt.
Ghorab, H.Y.; Zayed, A.M.; Mohamed, A.S.; Abdel Tawab, Y.; Mabrouk, M.R.; Ahmed, H.E.H. (2007) Factors affecting the sulfate expansion in cement systems. 12th Inter. Cong. Chem. Cem. (ICCC). Montreal, Canada, TH4-12.4.
Mohamed, A.S. (2006) Studies on the expansion behavior of ettringite in pure systems and in cement pastes. M.Sc. thesis Helwan University, Cairo, Egypt.
Norman, R.L.; Dann, S.E.; Hogg, S.C.; Kirk, C.A. (2013) Synthesis and structural characterisation of new ettringite and thaumasite type phases: Ca6 [Ga (OH) 6· 12H2O] 2 (SO4) 3· 2H2O and Ca6 [M (OH) 6· 12H2O] 2 (SO4) 2 (CO3) 2, M= Mn, Sn. Solid. State. Sci. 25, 110-117. https://doi.org/10.1016/j.solidstatesciences.2013.08.006
Granger M.; Protas, J. (1969) Determination et etude de la structure cristalline de la jouravskite Ca3MnIV(SO4)(CO3)(OH)*12(H2O). Acta. Crystallogr. B25 1943-1951 Locality: Tachgagalt mine, Morocco. Database_code_amcsd 0009362. https://doi.org/10.1107/S0567740869005000
Gaudefroy, C.; Permingeat, F. (1965) La jouravskite, une nouvelle espèce minérale. Bull. Soc. fr. minéral. Cristallogr. 88, 254-262. Reference code00-018-0668. https://doi.org/10.3406/bulmi.1965.5841
Scrivener, K.; Skalny, J.P. (2005) Conclusions of the international RILEM TC 186-ISA workshop on internal sulfate attack and delayed ettringite formation (4-6 September 2002, Villars, Switzerland). Mater. Struct. 38 [6], 659-663. https://doi.org/10.1617/14111
Whittaker, M.; Black, L. (2015) Current knowledge of external sulfate attack. Adv. Cem. Res. 27 [9], 532-545. https://doi.org/10.1680/adcr.14.00089
Bensted, J. (2003). Thaumasite--direct, woodfordite and other possible formation routes. Cem. Concr. Compos. 25 [8], 873-877. https://doi.org/10.1016/S0958-9465(03)00115-X
Ghorab, H.Y.; Zahran, F.S.; Kamal, M.; Meawad, A.S. (2018). On the durability of portland limestone cement: Effect of pH on the thaumasite formation. HBRC J. 14 [3], 340-344. https://doi.org/10.1016/j.hbrcj.2017.04.002
Ghorab, H.Y.; Mabrouk, M.R.; Abd Elnaby, S.F.; Yousri, K.M.; Ahmed, H.H.; Herfort, D.; Osman, Y.A. (2014). The suitability of portland limestone cement for use in construction applications in Egypt. Cem. Inter. 12, 70-77.
Dweck, J.; Ferreira da Silva1, P.; Silva Aderne, R.; Büchler, P.; Cartledge, F.K. (2003) Evaluating cement hydration by non-conventional DTA; An Application to Waste Solidification. J. Therm. Anal. Calorim. 71 [3], 821-827.
Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P. (2009) Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste. Manag. 29 [1], 390-403. https://doi.org/10.1016/j.wasman.2008.01.019 PMid:18367391
Yousuf, M.; Mollah, A.; Vempati, R.K.; Lin, T.C.; Cocke, D.L. (1995) The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems. Waste Manag. 15 [2], 137-148. https://doi.org/10.1016/0956-053X(95)00013-P
Tashiro, C.; Oba, J. (1979) The effects of Cr2O3, Cu (OH)2, ZnO and PbO on the compressive strength and the hydrates of the hardened C3A paste. Cem. Concr. Res. 9 [2], 253-258. https://doi.org/10.1016/0008-8846(79)90032-2
Poon, C.S.; Clark, A.I.; Peters, C.J.; Perry, R. (1985) Mechanisms of metal fixation and leaching by cement based fixation processes. Sci. Total Environ. 3 [2], 127-142. https://doi.org/10.1016/0734-242X(85)90071-0
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.