Comparando los efectos de la jouravskita y la etringita en la hidratación del clinker

Autores/as

DOI:

https://doi.org/10.3989/mc.2023.300222

Palabras clave:

Jouravskita, Etringita, Clínker, Hidratación, Solución de sulfato

Resumen


El manganeso ingresa al clínker a partir de combustibles alternativos y materias primas alternativas. Está presente en los minerales de hierro utilizados en la combustión del cemento y se encuentra en las escorias empleadas como materiales complementarios del cemento. La jouravskita, como miembro de la familia de la etringita, puede formarse en cementos de piedra caliza cuando se expone a medios ricos en sulfatos. Para comprender su efecto en el proceso de hidratación, se midió con un micrómetro la expansión de pequeñas pastas cilíndricas de clínker dopadas con jouravskita y etringita sintetizadas en soluciones de sulfato de magnesio, y se monitoreó la resistencia a la compresión de cubos representativos. Las fases formadas se caracterizaron mediante difracción de rayos X, espectroscopia infrarroja y microscopia electrónica de barrido. Se encuentra que la jouravskita es un fuerte retardador de la hidratación del clínker, probablemente debido a su adsorción en los hidratos de cemento.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Global Waste Statistics (2022) Waste Statistics / By Cheapa Waste.

Chaterjee, A.; Sui, T. (2019) Alternative fuels-Effects on clinker process and properties. Cem. Concr. Res. 123, 105777. https://doi.org/10.1016/j.cemconres.2019.105777

Shimosaka, K.; Inoue, T.; Tanaka, H.; Kishimoto, Y. (2007) Influence of minor elements in clinker on the properties of cement:a new approach for application to commercial cement manufacturing. Trans. Mater. Res. Soc. Japan. 32 [3], 647-652. https://doi.org/10.14723/tmrsj.32.647

Achternbosch, M.; Bräutigam, K.R.; Hartlieb, N.; Kupsch, C.M.; Richers, U.; Stemmermann, P.; Gleis, M. (2003) Heavy metals in cement and concrete resulting from the co-incineration of wastes in cement kilns with regard to the legitimacy of waste utilisation. Karlsruhe: Forschungszentrum Karlsruhe GmbH.

Ludwig, H.M.; Zhang, W. (2015) Research review of cement clinker chemistry. Cem. Concr. Res. 78, 24-37. https://doi.org/10.1016/j.cemconres.2015.05.018

Lea, F.M. (1970) The Chemistry of Cement and Concrete. 3rd Edition, Edward Arnold Ltd. London. 76 (1970).

Saidi, I.; Ben Abdelmalek, J.; Ben Said, O.; Chicharo, L.; Beyrem, H. (2020) Chemical composition and heavy metal content of portland cement in northern tunisia. Iran. J. Chem. Chem. Eng. (IJCCE). 39 [3], 147-158.

Nath, S.K.; Randhawa, N.S.; Kumar, S. (2022) A review on characteristics of silico-manganese slag and its utilization into construction materials. Resour. Conserv. Recycl. 176, 105946. https://doi.org/10.1016/j.resconrec.2021.105946

Saly, F.; Guo, L.; Ma, R.; Gu, C.; Sun, W. (2018) Properties of steel slag and stainlesssteel slag as cement replacement materials: a comparative study. J. Wuhan Univ. Technol. Mater. Sci. Ed. 33 [6], 1444-1451. https://doi.org/10.1007/s11595-018-1989-3

Anjali, P.; Sajitha Beegom, A. (2022) A study on the utilization of activated steel slag as partial replacement of cement in concrete. Int. J. Eng. Res. Technol (IJERT). 11 [01].

Wulfert, H.; Keyssner, M.; Ludwig, H.M.; Adamczyk, B. (2013) Metal recovery and conversion of steel slag into highly reactive cement components. ZKG. Int Deutsch-englische Ausgabe. 9, 34-40 (1995).

Puertas, F.; Glasser, F.P.; Blanco-Varela, M.T.; Vaquez, T. (1988) Influence of the kiln atmosphere on manganese solid solution in Ca3SiO5 and CA2SiO4. Cem. Concr. Res. 18 [5], 783-788. https://doi.org/10.1016/0008-8846(88)90103-2

Puertas, F.; Blanco, M.T.; Vázquez, T. (1989) Manganese substitutions into the portland cement clinker phases. Mater. Construcc. 39 [214], 19-30. https://doi.org/10.3989/mc.1989.v39.i214.806

Puertas, F.; Varela, M.B.; Dominguez, R. (1990) Characterization of Ca2AlMnO5. A comparative study between Ca2AlMnO5 and Ca2AlFeO5. Cem. Concr. Res. 20 [3], 429-438. https://doi.org/10.1016/0008-8846(90)90033-T

Diouri, A.; Boukhari, A.; Aride, J.; Puertas, F.; Vázquez, T. (1997) Stable Ca3SiO5 solid solution containing manganese and phosphorus. Cem. Concr. Res. 27 [8], 1203-1212. https://doi.org/10.1016/S0008-8846(97)00110-5

Tao, Y.; Zhang, W.; Shang, D.; Xia, Z.; Li, N.; Ching, W.Y.; Hu, S. (2018) Comprehending the occupying preference of manganese substitution in crystalline cement clinker phases: A theoretical study. Cem. Concr. Res. 109, 19-29. https://doi.org/10.1016/j.cemconres.2018.04.003

Lea's. (1998) Chemistry of cement and concrete. fourth edition. ISBN 0340 565896. Reprinted by Butterworth-Heinemann.

Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. (1999) Advanced inorganic chemistry. John Wiley and Sons, Inc.

Jouravskite: Mineral information, data and localities.

Chukanov, N.V.; Zubkova, N.V.; Pautov, L.A.; Göttlicher, J.; Kasatkin, A.V.; Van, K.V.; Pushcharovsky, D.Y. (2019). Jouravskite: refined data on the crystal structure, chemical composition and spectroscopic properties. Phys. Chem. Miner. 46 [4], 417-425. https://doi.org/10.1007/s00269-018-1012-8

Mohamed, M.K.M. (2022) Studies on some important salts formed in Portland cement: Thaumasite and ettringite-similar phases. Ph.D. Thesis, Helwan University Cairo Egypt.

Ghorab, H.Y.; Zayed, A.M.; Mohamed, A.S.; Abdel Tawab, Y.; Mabrouk, M.R.; Ahmed, H.E.H. (2007) Factors affecting the sulfate expansion in cement systems. 12th Inter. Cong. Chem. Cem. (ICCC). Montreal, Canada, TH4-12.4.

Mohamed, A.S. (2006) Studies on the expansion behavior of ettringite in pure systems and in cement pastes. M.Sc. thesis Helwan University, Cairo, Egypt.

Norman, R.L.; Dann, S.E.; Hogg, S.C.; Kirk, C.A. (2013) Synthesis and structural characterisation of new ettringite and thaumasite type phases: Ca6 [Ga (OH) 6· 12H2O] 2 (SO4) 3· 2H2O and Ca6 [M (OH) 6· 12H2O] 2 (SO4) 2 (CO3) 2, M= Mn, Sn. Solid. State. Sci. 25, 110-117. https://doi.org/10.1016/j.solidstatesciences.2013.08.006

Granger M.; Protas, J. (1969) Determination et etude de la structure cristalline de la jouravskite Ca3MnIV(SO4)(CO3)(OH)*12(H2O). Acta. Crystallogr. B25 1943-1951 Locality: Tachgagalt mine, Morocco. Database_code_amcsd 0009362. https://doi.org/10.1107/S0567740869005000

Gaudefroy, C.; Permingeat, F. (1965) La jouravskite, une nouvelle espèce minérale. Bull. Soc. fr. minéral. Cristallogr. 88, 254-262. Reference code00-018-0668. https://doi.org/10.3406/bulmi.1965.5841

Scrivener, K.; Skalny, J.P. (2005) Conclusions of the international RILEM TC 186-ISA workshop on internal sulfate attack and delayed ettringite formation (4-6 September 2002, Villars, Switzerland). Mater. Struct. 38 [6], 659-663. https://doi.org/10.1617/14111

Whittaker, M.; Black, L. (2015) Current knowledge of external sulfate attack. Adv. Cem. Res. 27 [9], 532-545. https://doi.org/10.1680/adcr.14.00089

Bensted, J. (2003). Thaumasite--direct, woodfordite and other possible formation routes. Cem. Concr. Compos. 25 [8], 873-877. https://doi.org/10.1016/S0958-9465(03)00115-X

Ghorab, H.Y.; Zahran, F.S.; Kamal, M.; Meawad, A.S. (2018). On the durability of portland limestone cement: Effect of pH on the thaumasite formation. HBRC J. 14 [3], 340-344. https://doi.org/10.1016/j.hbrcj.2017.04.002

Ghorab, H.Y.; Mabrouk, M.R.; Abd Elnaby, S.F.; Yousri, K.M.; Ahmed, H.H.; Herfort, D.; Osman, Y.A. (2014). The suitability of portland limestone cement for use in construction applications in Egypt. Cem. Inter. 12, 70-77.

Dweck, J.; Ferreira da Silva1, P.; Silva Aderne, R.; Büchler, P.; Cartledge, F.K. (2003) Evaluating cement hydration by non-conventional DTA; An Application to Waste Solidification. J. Therm. Anal. Calorim. 71 [3], 821-827.

Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P. (2009) Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste. Manag. 29 [1], 390-403. https://doi.org/10.1016/j.wasman.2008.01.019 PMid:18367391

Yousuf, M.; Mollah, A.; Vempati, R.K.; Lin, T.C.; Cocke, D.L. (1995) The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems. Waste Manag. 15 [2], 137-148. https://doi.org/10.1016/0956-053X(95)00013-P

Tashiro, C.; Oba, J. (1979) The effects of Cr2O3, Cu (OH)2, ZnO and PbO on the compressive strength and the hydrates of the hardened C3A paste. Cem. Concr. Res. 9 [2], 253-258. https://doi.org/10.1016/0008-8846(79)90032-2

Poon, C.S.; Clark, A.I.; Peters, C.J.; Perry, R. (1985) Mechanisms of metal fixation and leaching by cement based fixation processes. Sci. Total Environ. 3 [2], 127-142. https://doi.org/10.1016/0734-242X(85)90071-0

Publicado

2023-03-06

Cómo citar

Ghorab, H. ., Mohamed, M. ., & Mohamed, S. . (2023). Comparando los efectos de la jouravskita y la etringita en la hidratación del clinker. Materiales De Construcción, 73(349), e303. https://doi.org/10.3989/mc.2023.300222

Número

Sección

Artículos