Demanda Gold sandstone (Burgos): effect of consolidation and ageing tests on its petrographic and petrophysical properties

Authors

DOI:

https://doi.org/10.3989/mc.2023.296622

Keywords:

Sandstone, Quality, Durability, Porosity, Petrographic and petrophysical characterisation

Abstract


Sandstones have been widely used in construction for their abundance, aesthetics, and ease of extraction. To determine sandstones’ quality, it is essential to analyse their petrographic and petrophysical properties and sensitivity (durability and conservation) to environmental agents. This paper evaluates the physical-mechanical changes undergone by Sierra de la Demanda (Burgos, Spain) sandstone under combined and induced water and salt aggression and assesses ESTEL 1100’s effectiveness and suitability as a treatment. This sandstone is porous, permeable, dense and quartz-rich with high hardness and strength. The treatment improved its petrophysical properties by modifying its pore geometry and connectivity, reducing absorbency, permeability and anisotropy, and further increasing its hardness and resistance. Salts did not substantially modify its properties as its porosity type absorbed the crystallisation pressure. Ultimately, its pore system and predominantly quartz composition make it a high-quality, weather-resistant material compatible with the treatment applied.

Downloads

Download data is not yet available.

References

Hosein-Ghobadi, M.; Babazadeh, R.; Khodabakhsh, S. (2014) Petrophysical and durability tests on sandstones for the evaluation of their quality as building stones using Analytical Hierarchy Process (AHP). J. Geope. 4 [1], 25-43.

Stück, H.; Koch, R.; Siegesmund, S. (2013) Petrographical and petrophysical properties of sandstones: statistical analysis as an approach to predict material behaviour and construction suitability. Environ. Earth Sci. 69, 1299-1332. https://doi.org/10.1007/s12665-012-2008-1

Vázquez, P.; Alonso, F.J.; Carrizo, L.; Molina, E.; Cultrone, G.; Blanco, M.; Zamora, I. (2013) Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Const. Build. Mat. 41, 868-878. https://doi.org/10.1016/j.conbuildmat.2012.12.026

Cultrone. G.; Luque, A.; Sebastián, E. (2012) Petrophysical and durability tests on sedimentary stones to evaluate their quality as building materials. Quart. J. Eng. Geol. Hydrog. 45, 415-422. https://doi.org/10.1144/qjegh2012-007

Ruedrich, J.; Bartelsen, T.; Dohrmann, R.; Siegesmund, S. (2011) Moisture expansion as a deterioration factor for sandstone used in buildings. Environ. Earth Sci. 63, 1545-1564. https://doi.org/10.1007/s12665-010-0767-0

Buj, O.; Gisbert, J. (2007) Petrophysical characterization of three commercial varieties of Miocene sandstones from the Ebro valley. Mater. Construcc. 57 [287], 63-74. https://doi.org/10.3989/mc.2007.v57.i287.57

McCabe, S.; Smith, B.J.; Warke, P.A. (2007) Preliminary observations on the impact of complex stress histories on sandstone response to salt weathering: laboratory simulations of process combinations. Environ. Geol. 52, 251-258. https://doi.org/10.1007/s00254-006-0531-7

Forestieri, G.; Álvarez de Buergo, M. (2019) Petrophysical-mechanical behavior of Grisolia Stone found in the architectural heritage of southern Italy. Mater. Construcc. 69 [334], e188. https://doi.org/10.3989/mc.2019.04118

Molina, E.; Cultrone, G.; Sebastián E.; Alonso, F.J. (2013) Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests. J. Geophys. Eng. 10 [3], 035003. https://doi.org/10.1088/1742-2132/10/3/035003

Esbert, R.M.; Alonso, F.J.; Ordaz. J. (2008) La petrofísica en la interpretación del deterioro y la conservación de la piedra de edificación. Trabajos de Geología. 28, 87-95. Univ. Oviedo.

Varas, M.J.; Molina, E.; Vicente, M.A. (2003) Petrophysical characteristics of the sandstones used in the construction of the Monumental Heritage of Ciudad Rodrigo, Salamanca, España. Mater. Construcc. 53 [269], 73-88. https://doi.org/10.3989/mc.2003.v53.i269.269

Varas, M.J.; Molina, E.; Vicente, M.A. (2002) Ornamental sandstones used in Ciudad Rodrigo, Salamanca: petrographic and chemical characterization of the quarry materials. Mater. Construcc. 52 [266], 33-53. https://doi.org/10.3989/mc.2002.v52.i266.333

García-Talegón, J.; Iñigo, A.C.; Alonso-Gavilán, G.; Vicente-Tavera. S. (2014) Villamayor Stone (Golden Stone) as a Global Heritage Stone Resource from Salamanca (NW of Spain). In: Global Heritage Stone: Towards International Recognition of Building and Ornamental Stones. Pereira, D., Marker, B. R., Kramar, S., Cooper, B. J. & Schouenborg, B. E. (eds). Geol. Soc. London, Special Publications. 407, 12p. https://doi.org/10.1144/SP407.19

Molina, E.; Cultrone, G.; Sebastián, E.; Alonso, F.J.; Carrizo, L.; Gisbert, J.; Buj, O. (2011) The pore system of sedimentary rocks as a key factor in the durability of buildings materials. Eng. Geol. 118 [3-4], 110-121. https://doi.org/10.1016/j.enggeo.2011.01.008

Benavente, D.; Cueto, N.; Martínez-Martínez, J.; García del Cura, M.A.; Cañaveras. J.C. (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 52, 215-224. https://doi.org/10.1007/s00254-006-0475-y

Benavente, D.; García del Cura, M.A.; Fort, R., Ordóñez, S. (2004) Durability estimation of porous building stones from pore structure and strength. Eng. Geol. 74 [1-2], 113-127. https://doi.org/10.1016/j.enggeo.2004.03.005

Fort, R.; Feijoo, J.; Varas-Muriel, M.J.; Navacerrada, M.A.; Barbero-Barrera, M.M.; De la Prida, D. (2022) Appraisal of non-destructive in situ techniques to determine moisture - and salt crystallization- induced damage in dolostones. J. Build. Eng. 53, 104525. https://doi.org/10.1016/j.jobe.2022.104525

Angeli, M.; Bigas, J.P.; Benavente, D.; Menéndez, B.; Hébert R.; David, C. (2007) Salt crystallization in pores: quantification and estimation of damage. Environ. Geol. 52, 205-213. https://doi.org/10.1007/s00254-006-0474-z

Ruedrich J.; Siegesmund, S. (2007) Salt and ice crystallisation in porous sandstones. Environ. Geol. 52, 225-249. https://doi.org/10.1007/s00254-006-0585-6

Benavente, D.; García del Cura, M.A.; García-Guinea, J.; Sánchez-Moral, S.; Ordoñez, S. (2004) Role of pore structure in salt crystallisation in unsaturated porous stone. J. Crys. Growth. 260, 532-544. https://doi.org/10.1016/j.jcrysgro.2003.09.004

Varas-Muriel, M.J.; Pérez-Monserrat, E.M.; Vázquez-Calvo, M.C.; Fort, R. (2015) Effect of conservation treatments on heritage stone. Characterisation of decay processes in a case study. Const. Build. Mat. 95, 611-622. https://doi.org/10.1016/j.conbuildmat.2015.07.087

Varas-Muriel, M.J.; Alvarez de Buergo, M.; Fort, R. (2007) The influence of past protective treatments on the deterioration of historic stone façades: A case study. Stud. Conser. 52 [2], 110-124. https://doi.org/10.1179/sic.2007.52.2.110

Esbert, R.M.; Díaz Pache, F. (1993) Influencia de las características petrofísicas en la penetración de consolidantes en rocas monumentales porosas. Mater. Construcc. 43 [230], 25-36. https://doi.org/10.3989/mc.1993.v43.i230.681

Pozo-Antonio, J.S.; Noya, D.; Montojo, C. (2020) Aesthetic effects on granite of adding nanoparticle TiO2 to Si-Based consolidants (ethyl silicate or nano-sized silica). Coatings. 10 [3], 215. https://doi.org/10.3390/coatings10030215

Luque, A.; Cultrone, G.; Sebastián, E.; Cazalla, O. (2008) Effectiveness of stone treatments in enhancing the durability of bioclastic calcarenite (Granada, Spain). Mater. Construcc. 58 [292], 115-128. https://doi.org/10.3989/mc.2008.41607

Zendri, E.; Biscontin, G.; Nardini, I.; Riato, S. (2007) Characterization and reactivity of silicatic consolidants, Const. Buil. Mat. 21 [5], 1098-1106. https://doi.org/10.1016/j.conbuildmat.2006.01.006

Fort, R.; Álvarez de Buergo, M.; Varas-Muriel, M. J.; Vázquez-Calvo, M.C. (2005) Valoración de tratamientos con polímeros sintéticos para la conservación de materiales pétreos del patrimonio. R. Plásticos Modernos. 89 [583], 83-89.

Mas, R.; García, A.; Salas, R.; Meléndez, A.; Alonso, A.; Aurell, M.; Bádenas, B.; Benito, M.I.; Carenas, B.; García-Hidalgo, J.F.; Gil, J.; Segura, M. (2004) Segunda fase de rifting: Jurásico Superior-Cretácico inferior. In: Vera, J. A. (ed.) Geología de España, IGME, SGE. 503- 522.

Arribas, J.; Ochoa, M.; Mas, R.; Arribas, Mª. E.; González-Acebrón, L. (2007) Sandstone petrofacies in the northwestern sector of the Iberian Basin. J. Iberian Geol. 33 [2], 191-206.

SIEMCALSA (Sociedad de Investigación y explotación Minera de Castilla y León) (2008) La piedra natural en Castilla y León. Junta de Castilla y León. Consejo de Economía y Empleo. Domènech e-learning multimedia, S.A. ediciones. Deposito Legal: B-3721-2008.

UNE-EN 16515 (2016) Conservación del patrimonio cultural. Métodos de ensayo. Líneas directrices para caracterizar la piedra natural utilizada en el patrimonio cultural. Asociación Española de Normalización y Certificación (AENOR). Madrid.

UNE-EN 12407 (2020) Métodos de ensayo para la piedra natural. Estudio petrográfico. Asociación Española de Normalización y Certificación (AENOR). Madrid.

Varas-Muriel, M.J. (2012) Técnicas de caracterización petrológicas (II): microscopía óptica de fluorescencia (MOF) y microscopía electrónica de barrido (MEB). En: La conservación de los geomateriales utilizados en el patrimonio. Ed. Programa Geomateriales. Comunidad de Madrid. España, pp. 31-36. ISBN: 978-84-615-7660-9.

UNE-EN 15886 (2011) Conservación del patrimonio cultural. Métodos de ensayo. Medición del color de superficies. Asociación Española de Normalización y Certificación (AENOR). Madrid.

ASTM E313 (2020). Standard practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates. American Society for Testing and Materials (ASTM). West Conshohocken, PA, 19428-2959. Unites States.

ASTM D523-14 (2018) Standard test method for specular gloss. American Society for Testing and Materials (ASTM). Pennsylvania, 2018.

UNE-EN 16714 (2017) Ensayos no destructivos. Ensayo por termografía. Asociación Española de Normalización y Certificación (AENOR). Madrid.

UNE-EN 15802 (2010) Conservación del patrimonio cultural. Métodos de ensayo. Determinación del ángulo de contacto estático. Asociación Española de Normalización y Certificación (AENOR). Madrid.

UNE-EN 14579 (2005) Métodos de ensayo de piedra natural. Determinación de la velocidad de propagación del sonido. Asociación Española de Normalización y Certificación (AENOR). Madrid.

Fort, R.; Varas, M.J.; Álvarez de Buergo, M.; Freire-Lista, D.M. (2011) Determination of anisotropy to enhance the durability of natural stone. J. Geophys. Eng. 8 [3], 132-144. https://doi.org/10.1088/1742-2132/8/3/S13

Fort, R.; Fernández-Revuelta, B.; Varas, M. J.; Álvarez de Buergo, M.; Taborda-Duarte, M. (2008) Influence of anisotropy on the durability of Madrid-region Cretaceous dolostone exposed to salt crystallization processes. Mater. Construcc. 58, 289-290. https://doi.org/10.3989/mc.2008.v58.i289-290.74

Guyader, J.; Denis, A. (1986) Propagation des ondes dans les roches anisotropes sous contrainte évaluation de la qualité des schistes ardoisiers. Bullet. Eng. Geol. 33, 49-55. https://doi.org/10.1007/BF02594705

ASTM D4404 (2010) Standard test method for determination of pore volume and pore volume distribution of soil and rock by Mercury Intrusion Porosimetry. American Society for Testing and Materials (ASTM). Pennsylvania, 2010. United States.

UNE-EN 1936 (2007) Métodos de ensayo para piedra natural: Determinación de la densidad real y aparente y de la porosidad abierta y total. Asociación Española de Normalización y Certificación (AENOR). Madrid.

UNE-EN 13755 (2008) Métodos de ensayo de piedra natural. Determinación de la absorción de agua a presión atmosférica. Asociación Española de Normalización y Certificación (AENOR). Madrid.

NORMAL 7/81 (1981) Assorimiento d'acqua per inmersione totale. Capacitá di imbibizione. Doc., CNR-ICR. Roma. 5p.

UNE-EN 15801 (2010) Conservación del patrimonio cultural. Métodos de ensayo. Determinación de la absorción de agua por capilaridad. Asociación Española de Normalización y Certificación (AENOR). Madrid.

UNE-EN 15803 (2010) Conservación del patrimonio cultural. Métodos de ensayo. Determinación de la permeabilidad al vapor de agua. Asociación Española de Normalización y Certificación (AENOR). Madrid.

UNE-EN ISO 16859-1 (2016) Materiales metálicos. Ensayo de dureza Leeb. Parte 1: Método de ensayo. (ISO 16859-1:2015). Asociación Española de Normalización y Certificación (AENOR). Madrid.

ASTM D5873-14 (2016) Standard test method for determination of rock hardness by rebound hammer method. American Society for Testing and Materials (ASTM). West Conshohocken, PA, 2000.

Aydin, A. (2009) ISRM (International Society for Rock Mechanics Commission) Suggested method for determination of the Schmidt hammer rebound hardness: revised version. Int. J. Rock Mech. Min. Sci. 46 [3], 627-634. https://doi.org/10.1016/j.ijrmms.2008.01.020

Katz, O.; Reches, Z.; Roegiers, J.C. (2000) Evaluation of mechanical rock properties using a Schmidt Hammer. Int. J. Rock Mech. Min. Sci. 37 [4], 723-28. https://doi.org/10.1016/S1365-1609(00)00004-6

UNE-EN 12370 (2020) Métodos de ensayo para piedra natural. Determinación de la resistencia a la cristalización de las sales. Asociación Española de Normalización y Certificación (AENOR). Madrid.

Baccelle, L.; Bosellini, A. (1965) Diagrammi per la stima visive della composizione percentuale nelle rocche sedimentarie. Annali dell'Università di Ferrara, sezione 9, Scienze geologiche e paleontologiche. 1 [3], 59-62.

Pettijohn, F.J.; Potter, P.E.; Siever, R. (1987) Sand and sandstone. Springer-Verlag, New York. 617p. https://doi.org/10.1007/978-1-4612-1066-5

Grossi, C.M.; Brimblecombe, P.; Esbert, R.M.; Alonso, F.J. (2007) Color changes in architectural limestones from pollution and cleaning. Color Res. Appl. 32 [4], 320-331. https://doi.org/10.1002/col.20322

Cultrone, G.; Sánchez-Ibañéz, V. (2018) Consolidation with ethyl silicate: how the amount of product alters the physical properties of the bricks and affects their durability. Mater Construcc. 68 [332], e173. https://doi.org/10.3989/mc.2018.12817

Zoghlami, K.; López-Arce; P., Zornoza-Indart, A. (2016) Differential stone decay at the Spanish tower façade of Bizerte, Tunisia. J. Mater. Civ. Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001774

Zoghlami, K.; Gómez-Gras, D.; Álvarez, A.; Luxan, M.P. (2004) Intrinsic factors that condition the physical behavior and the durability of the Miocene sandstones used in the construction of the Roman aqueduct of Zaghouan-Carthage. Mater. Construcc. 54 [276], 37-49. https://doi.org/10.3989/mc.2004.v54.i276.254

Dunčková, L.; Durmeková, T.; Adamcová, R.; Bednarik, M. (2022) Laboratory Assessment of Selected Protective Coatings Applied on Two Sandstone Types. Coatings. 12 [6], 761. https://doi.org/10.3390/coatings12060761

González de Vallejo, L.; Ferrer, M.; Ortuño, L.; Oteo, C. (2012) (4th Ed). Ingeniería Geológica. Prentice Hall Pearson Educación, Madrid. 744p.

Saptono, S.; Kramadibrata, S.; Sulistianto, B. (2013) Using the Schmidt Hammer on rock mass characteristic in sedimentary rock at Tutupan coal mine. Proc. Earth Planet. Sci. 6, 390-395. https://doi.org/10.1016/j.proeps.2013.01.051

Desarnaud, J.; Kiriyama, K.; Bicer Simsir, B.; Wilhelm, K.; Viles, H. (2019) A laboratory study of Equotip surface hardness measurements on a range of sandstones: What influences the values and what do they mean? Earth Surf. Process. Landf. 44 [7], 1419-1429. https://doi.org/10.1002/esp.4584

Aoki, H.; Matsukura, Y. (2008) Estimating the unconfined compressive strength of intact rocks from Equotip hardness. Bull. Engineer. Geol. Environ. 67, 23-29. https://doi.org/10.1007/s10064-007-0116-z

Published

2023-03-06

How to Cite

Gómez-Marfil, A. ., & Varas-Muriel, M. . (2023). Demanda Gold sandstone (Burgos): effect of consolidation and ageing tests on its petrographic and petrophysical properties. Materiales De Construcción, 73(349), e309. https://doi.org/10.3989/mc.2023.296622

Issue

Section

Research Articles

Funding data

Comunidad de Madrid
Grant numbers S2018/NMT-4372