Caracterización petrográfica y petrofísica de los principales morteros aéreos e hidráulicos usados en los sectores de la construcción y la rehabilitación

Autores/as

DOI:

https://doi.org/10.3989/mc.2025.379124

Palabras clave:

Morteros hidráulicos, Morteros aéreos, Caracterización petrográfica, Propiedades petrofísicas, Usos adecuados

Resumen


La caracterización petrográfica y petrofísica de los morteros aéreos e hidráulicos permite distinguirlos y establecer sus aplicaciones más adecuadas. Los morteros de cales naturales, aéreas o hidráulicas, y cementos artificiales, presentan diferentes propiedades físicas. Estas, dependen de sus características petrográficas y repercuten en sus propiedades mecánicas. Por ello, este estudio comparativo con técnicas y ensayos normalizados ha analizado estos morteros desde un punto de vista petrográfico, petrofísico y mecánico. Los procesos químicos y porosidad originados durante la elaboración y posterior curado de los morteros explican su comportamiento físico (dureza, resistencia, acceso y retención de fluidos). Este estudio confirma que los morteros de cal aérea son los más porosos y menos resistentes, mientras que los de cemento son los más resistentes e impermeables. Asimismo, los morteros de cales hidráulicas naturales, con características petrográficas semejantes a los de cemento, presentan propiedades físico-mecánicas similares a los aéreos, aunque son más impermeables y resistentes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Martínez-Ramírez S, Blanco-Varela MT. 2012. Caracterización de morteros históricos. Programa Geomateriales (Ed), La conservación de los geomateriales utilizados en el patrimonio, 55-62.

Lancaster LC. 2021. Mortars and plasters-How mortars were made. The literary sources. Archaeol. Anthropol. Sci. 13(11):192.

Varas MJ, Álvarez de Buergo M, Fort, R. 2007. Piedras artificiales: morteros y hormigones. El cemento como máximo representante de estos materiales de construcción. Ayuntamiento de San Sebastián de los Reyes (Ed), Ciencia Tecnología y Sociedad para una conservación sostenible del patrimonio pétreo, 179-189.

Arizzi A, Cultrone, G. 2021. Mortars and plasters-how to characterize hydraulic mortars. Archaeol. Anthropol. Sci. 13:144.

Sersale R. 1991. Lime: the first intime among the justly named binding materials. Atti della Accademia pontaniana, 40:257-275.

Alejandre Sánchez FJ. 2002. Historia, caracterización y restauración de morteros, Universidad de Sevilla: Secretariado de publicaciones, Instituto Universitario de Ciencias de la Construcción.

Varas MJ, Álvarez de Buergo M, Fort R. 2005. Natural cement as the precursor of Portland cement: Methodology for its identification. Cem. Concr. Res. 35(11):2055-2065.

Varas MJ, Álvarez de Buergo M, Fort R. 2007. The origin and development of natural cements: The Spanish experience. Constr. Build. Mater. 21(2):436-445.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 459-1. 2015. Building lime - Part 1: Definitions, specifications and conformity criteria.

Cowper AD. 1927. Lime and lime mortars. Donhead Publishing Ltd. Shaftesbury (UK).

Mertens G, Lindqvist JE, Sommain D, Elsen J. 2008. Calcareous hydraulic binders from ahistorical perspective. In Proceedings I of the Historical Mortar Conference (HMC08), 1-15, Lisbon, Portugal.

Eckel EC. 1922. Cement, limes and plasters: their materials, manufacture and properties, Wiley, London.

Oates JAH. 1998. Lime and limestone. Chemistry and technology, production and uses. First edition, Wiley-VCH, Weinheim.

Mertens G. 2009. Characterisation of historical mortars and mineralogical study of the physico-chemical reactions on the pozzolan-lime binder interface. PhD Thesis, Catholic University of Leuven.

Collepardi M. 1990. Degradation and restoration of masonry walls of historical buildings. Mater. Struct. 23(2):81-102.

Penazzi D, Valluzzi MR, Cardani G, Binda L, Baronio G, Modena C. 2000. Behaviour of historic masonry buildings in seismic areas: lessons learned from the Umbria-Marche earthquake. In Proceedings 12th International Brick and Block Masonry Conference, Volume I, 217-235, Madrid, Spain.

Callebaut K, Elsen J, Van Balen K, Viaene W. 2001. Nineteenth century hydraulic restoration mortars in the Saint Michael's Church (Leuven, Belgium): Natural hydraulic lime or cement? Cem. Concr. Res. 31(3):397-403.

Álvarez J, Lanas J. 2006. Preparación y ensayos de morteros de cal de nueva factura para su empleo en restauración del patrimonio. V Jornada Técnicas de Restauración y Conservación del Patrimonio, 1-13, La Plata, Argentina.

Mileto C, Vegas López-Manzanares F, García-Soriano L. 2017. La restauración de la tapia monumental: pasado, presente y futuro. Inf. Constr. 69(548):e231.

Kirilovica I, Vitina I, Lindina L. 2018. Hydration of cement minerals in a hydraulic dolomitic binder. Key Eng. Mater. 762:356-361.

Adams J, Dollimore D, Griffiths DL. 1993. Thermal analysis investigation of ancient mortars from Gothic structures. J. Therm. Anal. 40:275-284.

Giavarini C, Ferretti AS, Santarelli ML. 2006. Mechanical characteristics of Roman “opus caementicium”. In S. K. Kourkoulis (Ed.), Fracture and Failure of Natural Building Stones, Berlin: Springer, 107-120.

Moropoulou A, Bakolas A, Bisbikou K. 2000. Investigation of the technology of historic mortars. J. Cult. Herit. 1(1):45-58.

Zhang D, Zhao J, Wang D, Xu C, Zhai M, Ma X. 2018. Comparative study on the properties of three hydraulic lime mortar systems: Natural hydraulic lime mortar, cement-aerial lime-based mortar and slag-aerial lime-based mortar. Constr. Build. Mater. 186:42-52.

Ergenç D, Fort R, Varas-Muriel MJ, Álvarez de Buergo M. 2021. Mortars and plasters-How to characterize aerial mortars and plasters. Archaeol. Anthropol. Sci. 13:197. https://link.springer.com/article/10.1007/s12520-021-01398-x

Van Balen K. 2005. Carbonation reaction of lime, kinetics at ambient temperature. Cem. Concr. Res. 35(4):647-657.

Forsyth M. 2008. Materials & skills for historic building conservation. Blackwell Publishing Ltd.

Cizer Ö, Schueremans L, Serre G, Janssens E, Van Balem K. 2010. Assessment of the compatibility of repair mortars in restoration projects. Adv. Mater. Res. 133-134:1071-1076. https://doi.org/10.4028/www.scientific.net/AMR.133-134.1071

Schueremans L, Cizer Ö, Janssens E, Serre G, Balen KV. 2011. Characterization of repair mortars for the assessment of their compatibility in restoration projects: Research and practice. Constr. Build. Mater. 25(12):4338-4350.

Henry A, Stewart J. 2011. Mortars, renders & plasters. English Heritage, Practical Building Conservation, Ashgate Publishing Limited, Farnham.

Figueiredo C, Lawrence M, Ball RJ. 2016. Chemical and physical characterisation of three NHL 2 binders and the relationship with the mortar properties. In REHABEND 2016, Euro-American Congress: Construction Pathology, Rehabilitation Technology and Heritage Management, 1293-1300, Burgos, España.

Taylor HFW. 1998. Cement chemistry. Second edition. Thomas Telford. London.

Cultrone G, Sebastián Pardo E, Ortega Huertas M. 2005. Forced and natural carbonation of lime-based mortars with and without additives: Mineralogical and textural changes. Cem. Concr. Res. 35(12):2278-2289.

Arizzi A, Cultrone G. 2014. The water transfer properties and drying shrinkage of aerial lime-based mortars: An assessment of their quality as repair rendering materials. Environ. Earth. Sci. 71(4):1699-1710.

Feilden BM. 2003. Conservation of historic buildings. Third edition, Architectural Press, Oxford.

Moropoulou A, Bakolas A, Anagnostopoulou S. 2005. Composite materials in ancient structures. Cem. Concr. Compos. 27(2):295-300.

Varas-Muriel MJ, Pérez-Monserrat EM, Vázquez-Calvo MC, Fort R. 2015. Effect of conservation treatments on heritage stone. Characterisation of decay processes in a case study. Constr. Build. Mater. 95:611-622.

Ponce-Antón G, Cruz Zuluaga M, Ortega LA, Agirre Mauleon J. 2020. Petrographic and chemical-mineralogical characterization of mortars from the Cisterna at Amaiur Castle (Navarre, Spain). Minerals. 10(4):311.

Fort R, Varas-Muriel MJ, Zoghlami K, Ergenç D, Zaddem A. 2024. Analytical characterisation of 1st- and 2nd-century Roman mortars at the Utica archaeological site (Tunisia): construction phases and provenance of the raw materials. J. Archaeol. Sci. Rep. 54:104404. https://doi.org/10.1016/j.jasrep.2024.104404

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 17187. 2020. Conservation of cultural heritage - Characterization of mortars used in cultural heritage.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 197-1. 2011. Cement - Part 1: Composition, specifications and conformity criteria for common cements.

Ministerio de Fomento. Secretario General Técnico. Comité Permanente del Cemento. RC-16. 2016. Instrucción para la recepción de cementos.

Veiga MR, Aguiar J, Silva AS, Carvalho F. 2001. Methodologies for characterisation and repair of mortars of ancient buildings. In Proceedings of the 3rd International Seminar Historical Constructions: possibilities of numerical and experimental techniques, 353-362, Guimarães, Portugal.

Grilo J, Silva AS, Faria P, Gameiro A, Veiga R, Velosa A. 2014. Mechanical and mineralogical properties of natural hydraulic lime-metakaolin mortars in different curing conditions. Constr. Build. Mater. 51:287-294.

Pavlík V, Užáková M. 2016. Effect of curing conditions on the properties of lime, lime-metakaolin and lime-zeolite mortars. Constr. Build. Mater. 102(1):14-25.

Santhanam K, Ramadoss R. 2022. Sustainability development and performance evaluation of natural hydraulic lime mortar for restoration. Environ. Sci. Pollut. Res. Int. 29(6):79634-79648.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 14630. 2006. Products and systems for the protection and repair of concrete structures - Test methods - Determination of carbonation depth in hardened concrete by the phenolphthalein method.

Trezza MA, Scian AN. 2013. Aporte de las técnicas ATD/TG y espectroscopía FT-IR al estudio de la carbonatación de la matriz cementicia. Afinidad LXX, 562:112-117.

Borsoi G, Santos Silva A, Menezes P, Candeias A, Mirão J. 2019. Analytical characterization of ancient mortars from the archaeological roman site of Pisões (Beja, Portugal). Constr. Build. Mater. 204:597-608.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 15886. 2010. Conservation of cultural property - Test methods - Colour measurement of surfaces.

American Society for Testing and Materials (ASTM). ASTM E313. 2020. Standard practice for calculating yellowness and whiteness indices from instrumentally measured colour coordinates.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 15802. 2009. Conservation of cultural property - Test methods - Determination of static contact angle.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 14579. 2004. Natural stone test methods - Determination of sound speed propagation.

Guydader J, Denis A. 1986. Propagation des ondes dans les roches anisotropies sous contrainte évaluation de la qualité des schistes ardoisiers. Bull. Eng. Geol. Environ. 33:49-55.

Fort R, Fernández-Revuelta B, Varas MJ, Álvarez de Buergo M, Taborda-Duarte M. 2008. Influence of anisotropy on the durability of Madrid-region Cretaceous dolostone exposed to salt crystallization processes. Mater. Construcc. 58(289-290):161-178.

Fort R, Varas-Muriel MJ, Álvarez de Buergo Ballester M, Freire-Lista DM. 2011. Determination of anisotropy to enhance the durability of natural Stone. J. Geophys. Eng. 8(3):S132-S144.

American Society for Testing and Materials (ASTM). ASTM D4404. 2010. Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 1936. 2006. Natural stone test methods - Determination of real density and apparent density, and of total and open porosity.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 13755. 2008. Natural stone test methods - Determination of water absorption at atmospheric pressure.

Commissione di Normalizzazione Materiali Lapidei (NORMAL). Raccomandazione 7/81. 1981. Assorbimento d'acqua per immersione totale - Capacità di imbibizione.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 15801. 2009. Conservation of cultural property - Test methods - Determination of water absorption by capillarity.

European Committee for Standardization (Comité Européen de Normalisation, CEN). EN 15803. 2009. Conservation of cultural property - Test methods - Determination of water vapour permeability (δp).

European Committee for Standardization (Comité Européen de Normalisation, CEN). International Organization for Standardization (ISO). EN ISO 16859-1. 2015. Metallic materials - Leeb hardness test - Part 1: Test method.

American Society for Testing and Materials (ASTM). ASTM D5873-14. 2023. Standard test method for determination of rock hardness by rebound hammer method.

Deere DU, Miller RP. 1966. Engineering classification and index properties for intact rock tech. Technical Report nº AFWL - TR-65-116. University of Illinois.

Saptono S, Kramadibrata S, Sulistiano B. 2013. Using the schmidt hammer on rock mass characteristic in sedimentary rock at tutupan coal mine. Procedia Earth Planet. Sci. 6:390-395.

International Society for Rock Mechanics Commission. 1981. Rock characterization, testing and monitoring. ISRM suggested methods. Brown ET (ed.), Pergamon Press, Oxford.

Virella Torras A. 1964. Observación microscópica del clínker de cemento portland. Mater. Construcc. 14(113):23-30.

Elsen J. 2006. Microscopy of historic mortars - a review. Cem. Concr. Res. 36(8):1416-1424.

Álvarez de Buergo Ballester M, González Limón T. 1994. Restauración de edificios monumentales. Estudio de materiales y técnicas instrumentales. Segunda edición. Monografía Centro de Estudios y Experimentación de Obras Públicas (CEDEX M-43).

Borrelli E, Laurenzi Tabasso M, Sánchez Martínez AE. 1996. Realización de muestras de mortero con cal aérea para el estudio de productos consolidantes: Propuesta metodológica. III Congreso Internacional de Rehabilitación del Patrimonio Arquitectónico y Edificación, 307-313, Granada, España.

Skoulikidis TH, Charalambous D, Tsakona K. 1996. Amelioration of the properties of hydrated lime for the consolidation of the surface or/and the mass of building materials of monuments or new buildings or statues and ornaments. In Proceedings of the 8th International Congress on Deterioration and Conservation of Stone, 1599-1605, Berlin, Germany.

Warr LN. 2021. IMA-CNMNC approved mineral symbols. Mineral Mag. 85(3):291-320.

Ergenç D, Gómez-Villalba LS, Fort R. 2018. Crystal development during carbonation of lime-based mortars in different environmental conditions. Mater. Charact. 142:276-288.

Steiner S, Lothenbach B, Proske T, Borgschulte A, Winnefeld F. 2020. Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite. Cem. Concr. Res. 135:106116.

Allen G, Allen J, Elton N, Farey N, Holmes S, Livesey P, Radonjic M. 2003. Hydraulic lime mortar for stone. Brick and block masonry. Donhead Publishing Ltd. Dorset.

Kozlovcev P, Přikryl R. 2015. Devonian micritic limestones used in the historic production of Prague hydraulic lime (‘pasta di Praga’): characterization of the raw material and experimental laboratory burning. Mater. Construcc. 65(319):e060.

Válek J, Van Halem E, Viani A, Pérez-Estébanez M, Sevcík R, Sasek P. 2014. Determination of optimal burning temperature ranges for production of natural hydraulic limes. Constr. Build. Mater. 66:771-780.

Kozlovcev P, Válek J. 2021. The micro-structural character of limestone and its influence on the formation of phases in calcined products: natural hydraulic limes and cements. Mater. Struct. 54:217.

Gualtieri AF, Viani A, Montanari C. 2006. Quantitative phase analysis of hydraulic limes using the Rietveld method. Cem. Concr. Res. 36(2):401-406.

Artioli G, Secco M, Addis A. 2019. The Vitruvian legacy: Mortars and binders before and after the Roman world. Artioli G, Oberti R (eds.). The contribution of mineralogy to cultural heritage. 151-202. Collepardi M. 2003. A state-of-the-art review on delayed ettringite attack on concrete. Cem. Concr. Compos. 25(4-5):401-407.

Palomo A, Blanco-Varela MT, Martínez-Ramírez S, Puertas F, Fortes C. 2002. Historic mortars: characterization and durability. new tendencies for research. Advanced Research Centre for Cultural Heritage: Interdisciplinary Projects. In Fifth Framework Programme Workshop, Brussels, Belgium.

Farcas F, Touzé P. 2001. La spectrométrie infrarouge à transformée de Fourier (IRTF). Une méthode intéressante pour la caractérisation des ciments. Bull. Lab. Ponts Chaussées. 230(4350):77-88.

Diekamp A, Stalder R, Konzett J, Mirwald PW. 2012. Lime mortar with natural hydraulic components: Characterisation of reaction rims with FTIR imaging in ATR-mode. Válek J, Hughes JJ, Groot CJWP (eds). In Historic Mortars: Characterisation, assessment and repair, RILEM Bookseries, vol 7. Springer, Dordrecht, 105-113.

Földvári M. 2011. Handbook of thermogravimetric system of minerals and its use in geological practice, Geological Institute of Hungary, Budapest.

Fort R, Varas-Muriel MJ, Ergenç D, Cassar J, Anastasi M, Vella NC. 2023. The technology of ancient lime mortars from the Zejtun Roman Villa (Malta). Archaeol. Anthropol. Sci. 15:15.

Publicado

2025-03-25

Cómo citar

Parra-Fernández, C. ., & Varas-Muriel, M. . (2025). Caracterización petrográfica y petrofísica de los principales morteros aéreos e hidráulicos usados en los sectores de la construcción y la rehabilitación. Materiales De Construcción, 75(357), e367. https://doi.org/10.3989/mc.2025.379124

Número

Sección

Artículos

Datos de los fondos

Comunidad de Madrid
Números de la subvención S2018/NMT-4372

Ministerio de Ciencia e Innovación
Números de la subvención PRE2021-098699