Effect of fiber section shape and volume fraction on the mechanical properties of steel-fiber reinforced concretes

Authors

DOI:

https://doi.org/10.3989/mc.2023.350223

Keywords:

Steel fiber reinforced concrete, Mechanical property, Cross section shape, Failure mode, Strengthening

Abstract


This study presents the preparation of steel-fiber reinforced concretes (SFRCs) using straight navicular fibers with annular-sector-shaped sections and corrugated fiber with rectangular-shaped sections, respectively. The flexural and splitting tensile strengths of both the respective SFRCs increase with increasing fiber volume fraction, whereas their compressive strengths initially increase, then decrease, and then increase again. For the same fiber volume fraction, the mechanical properties of the navicular fiber-reinforced concrete are superior to those of the corrugated fiber-reinforced concretes. The introduction of steel fiber changes the failure mode of the plain concrete during bending from a typical brittle mode to a bimodal ductile failure mode. As compared to the corrugated fiber, the navicular fiber has stronger interface bonding to concrete and a higher friction resistance to fiber sliding and subsequent pullout. Furthermore, navicular fiber has a higher load-bearing capacity, which makes it more favorable for improving the mechanical properties of plain concrete.

Downloads

Download data is not yet available.

References

Belletti, B.; Cerioni, R.; Meda, A.; Plizzari, G.A. (2008) Design aspects on steel fiber-reinforced concrete pavements. J. Mater. Civ. Eng. 20 [9], 599−607. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(599)

Kroviakov, S.; Kryzhanovskyi, V.; Zavoloka, M. (2021) Steel fibrous concrete with high-early strength for rigid pavements repair. IOP Conf. Ser. Mater. Sci. Eng. 1162 [1], 012008. https://doi.org/10.1088/1757-899X/1162/1/012008

Li, X.; Xue, W.P.; Fu, C.; Yao, Z.S.; Liu, X.H. (2019) Mechanical properties of high-performance steel-fibre-reinforced concrete and its application in underground mine engineering. Mater. 12 [15], 2470. https://doi.org/10.3390/ma12152470 PMid:31382558 PMCid:PMC6696420

Massone, L.M.; Nazar, F. (2018) Analytical and experimental evaluation of the use of fibers as partial reinforcement in shotcrete for tunnels in Chile. Tunn, Undergr, Space Technol. 77, 13−25. https://doi.org/10.1016/j.tust.2018.03.027

Wang, X.L.; Fan, F.F.; Lai, J.X.; Xie, Y.L. (2021) Steel fiber reinforced concrete: A review of its material properties and usage in tunnel lining. Struct. 34 [5], 1080−1098. https://doi.org/10.1016/j.istruc.2021.07.086

Xu, H.Y.; Wang, Z.J.; Shao, Z.M.; Jin, H.S.; Li, Z.; Jiang, X.Z.; Cai, L.B. (2020) Experimental study on crack features of steel fiber reinforced concrete tunnel segments subjected to eccentric compression. Mater. Today Commun. 25, 101349. https://doi.org/10.1016/j.mtcomm.2020.101349

Esmaeili, J.; Andalibi, K.; Gencel, O.; Maleki, F.K.; Maleki, V.A. (2021) Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete. Constr. Build. Mater. 271, 121531. https://doi.org/10.1016/j.conbuildmat.2020.121531

Choi, E.; Mohammadzadeh, B.; Hwang, J.H.; Kim, W.J. (2018) Pullout behavior of superelastic SMA fibers with various end-shapes embedded in cement mortar. Constr. Build. Mater. 167, 605−616. https://doi.org/10.1016/j.conbuildmat.2018.02.070

Hao, Y.F.; Hao, H. (2017) Pull-out behaviour of spiral-shaped steel fibres from normal-strength concrete matrix. Constr. Build. Mater. 139, 34−44. https://doi.org/10.1016/j.conbuildmat.2017.02.040

Wille, K.; Kim, D.J.; Naaman, A.E. (2011) Strain-hardening UHP-FRC with low fiber contents. Mater. Struct. 44 [3], 583−598. https://doi.org/10.1617/s11527-010-9650-4

Wille, K.; Naaman, A.E.; El-Tawil, S.; Parra-Montesinos, G.J. (2012) Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. Mater. Struct. 45 [3], 309−324. https://doi.org/10.1617/s11527-011-9767-0

Wu, Z.M.; Shi., C.J.; He., W.; Wu, L.M. (2016) Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr. Build. Mater. 103, 8−14. https://doi.org/10.1016/j.conbuildmat.2015.11.028

Wu, Z.M.; Khayat, K.H.; Shi, C.J. (2018) How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC? Cem. Concr. Compos. 90, 193−201. https://doi.org/10.1016/j.cemconcomp.2018.03.021

Sulthan, F. (2020) Influence of steel fiber shapes on fresh and hardened properties of steel fiber reinforcement self-compacting concrete (SFRSCC). IOP Conf. Ser.: Mater. Sci. Eng. 849 [1], 012062. https://doi.org/10.1088/1757-899X/849/1/012062

Yoo, D.Y.; Kim, S.; Kim, J.J.; Chun, B. (2019) An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers. Constr. Build. Mater., 206, 46−61. https://doi.org/10.1016/j.conbuildmat.2019.02.058

Yoo, D.Y.; Park, J.J.; Kim, S.W. (2017) Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber type. Compos. Struct. 174, 263−276. https://doi.org/10.1016/j.compstruct.2017.04.064

Liu, Y.W.; Zhang, Z.H.; Shi, C.J.; Zhu, D.J.; Li, N.; Deng, Y.L. (2020) Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cem. Concr. Compos. 112, 103670. https://doi.org/10.1016/j.cemconcomp.2020.103670

Tai, Y.S.; El-Tawil, S. (2017) High loading-rate pullout behavior of inclined deformed steel fibers embedded in ultra-high performance concrete. Constr. Build. Mater. 148, 204−218. https://doi.org/10.1016/j.conbuildmat.2017.05.018

Krasnovsky, R.; Kapustin, D.; Korotkikh, D.; Efishov, L. (2021) Complete diagrams of strain under axial tension of steel-fiber reinforced concrete with different fiber types and content. IOP Conf. Ser.: Mater Sci. Eng. 1030, 012013. https://doi.org/10.1088/1757-899X/1030/1/012013

Rezakhani, R.; Scott, D.A.; Bousikhane, F.; Pathirage, M.; Cusatis, G. (2021) Influence of steel fiber size, shape, and strength on the quasi-static properties of ultra-high performance concrete: Experimental investigation and numerical modeling. Constr. Build. Mater. 296 [1], 123532. https://doi.org/10.1016/j.conbuildmat.2021.123532

Ushida, K.; Nasir, S.; Uehara, T.; Umehara, H. (2004) Effects of fiber shapes and contents on steel fiber reinforcement in high-strength concrete. Concr. Res. Technol. 15 [2], 13−23. https://doi.org/10.3151/crt1990.15.2_13

Feng, H.X.; Jiao, Y.J.; Cao, X.Y.; Liu, J.; Han, Y.H. (2023) Effect of steel fiber on thermal shock resistance of mullite castable. J. Chin. Ceram. Soc. 51 [6], 1565−1571. Retrieved from https://qikan.cqvip.com/Qikan/Article/Detail?id=7110021145.

Ni, K.X.; Zhang, M.J.; Gu, H.Z.; Huang, A.; Li, H.M.; Shao, Z.J. (2017) Steel fiber toughening mullite-SiC castables for coke dry quenching furnace corbel pillar. China's Refractory 26 [1], 24−30. Retrieved fromhttp://www.cnref.cn/EN/Y2017/V26/I1/24.

Wang, D.J.; Yu, S.Z.; Hu, Z.Y.; Duan, C.Y. (2021) Development and application of ρ-Al2O3 bonded mullite-corundum castables. Refrac. Lime. 46 [2], 26−28. Retrieved from http://qikan.cqvip.com/Qikan/Article/Detail?id=7104489221.

Ministry of Water Resources, People's Republic of China. SL352-2020. (2021) Test code for hydraulic concrete. Beijing: China Water and Power Press.

EN 14651: 2005+A1: 2007, (2008) Test method for metallic fibre concrete-measuring the flexural tensile strength. British Standards Institution, London, UK.

Xiong, B.W.; Wang, C.W.; Liu, K.; Wang, Z.J.; Xie, Z.Z.; Zhang, T.; Li, X.T. (2020) Interfacial phase induced load transfer in short carbon fiber reinforced Nb/Nb5Si3 composites. Mater. Sci. Eng. A. 799, 140156. https://doi.org/10.1016/j.msea.2020.140156

Sunaga, D.; Koba, T.; Kanakubo, T. (2021) Modeling of bridging law for bundled aramid fiber-reinforced cementitious composite and its adaptability in crack width evaluation. Mater. 14 [1], 179. https://doi.org/10.3390/ma14010179 PMid:33401650 PMCid:PMC7794925

Naaman, A.E. (2003) Engineered steel fibers with optimal properties for reinforcement of cement composites. J. Adv. Concr. Technol. 1 [3], 241−252. https://doi.org/10.3151/jact.1.241

Zhang, N.; Carrez., P.; Shahsavari, R. (2017) Screw-dislocation-induced strengthening-toughening mechanisms in complex layered materials: the case study of tobermorite. ACS Appl. Mater. Interf. 9 [2], 1496−1506. https://doi.org/10.1021/acsami.6b13107 PMid:28009497

Shuang, F.; Dai, Z.; Aifantis, K.E. (2021) Strengthening in metal/graphene composites: capturing the transition from interface to precipitate hardening. ACS Appl. Mater. Interf. 13 [22], 26610−26620. https://doi.org/10.1021/acsami.1c05129 PMid:34038072

Cheng, L.F.; Wu, S.J.; Zhang, L.T.; Xu, Y.D. (2009) Mechanical self-adaptability of a SiC/PyC/SiC composite during oxidation in air. J. Compos. Mater. 43 [4], 305−313. https://doi.org/10.1177/0021998308098240

Pereira, E.B.; Fischer, G.; Barros, J. (2012) Direct assessment of tensile stress-crack opening behavior of strain hardening cementitious composites (SHCC). Cem. Concr. Res. 42 [6], 834−846. https://doi.org/10.1016/j.cemconres.2012.03.006

Xue, R.; Liu, P.; Zhang, Z.J.; Zhang, N.L.; Zhang, Y.H.; Wang, J.P. (2021) Improvement of toughness of reaction bonded silicon carbide composites reinforced by surface-modified SiC whiskers. Ceram. Int. 47 [13], 18150−18156. https://doi.org/10.1016/j.ceramint.2021.03.133

Zando, R.B.; Mesgarnejad, A.; Pan, C.; Shefelbine, S.J.; Erb, R.M. (2020) Enhanced toughness in ceramic-reinforced polymer composites with herringbone architectures. Compos. Sci. Technol. 204 [1], 108513. https://doi.org/10.1016/j.compscitech.2020.108513

Zhang, K.; Gao, B.Z.; Gong, M.; Tong, Z.Y.; Fan, J.P. (2022) Design of crack deflection induced high toughness laminated Si3N4 ceramics based on hollow oriented one-dimensional microstructure. Ceram. Int. 48 [15], 21370−21377. https://doi.org/10.1016/j.ceramint.2022.04.103

Jang, S.J.; Yun, H.D. (2017) Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete. Compos. Struct. 185, 203−211. https://doi.org/10.1016/j.compstruct.2017.11.009

Liu, W.; Luo, L.; Xu, S.L.; Zhao, H.H. (2014) Effect of fiber volume fraction on crack propagation rate of ultra-high toughness cementitious composites. Eng. Fract. Mech. 124-125, 52−63. https://doi.org/10.1016/j.engfracmech.2014.03.007

Michels, J.; Christen, R.;Waldmann, D. (2013) Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete. Eng. Fract. Mech. 98, 326−349. https://doi.org/10.1016/j.engfracmech.2012.11.004

Wang, Z.L.; Shi, Z.M.; Wang, J.G. (2011) On the strength and toughness properties of SFRC under static-dynamic compression. Compos. Part B-Eng. 42 [5], 1285-1290. https://doi.org/10.1016/j.compositesb.2011.01.027

Published

2023-11-03

How to Cite

He, W., Wu, S., Zhang, B., Liu, Y., Luo, Y., & Fu, G. (2023). Effect of fiber section shape and volume fraction on the mechanical properties of steel-fiber reinforced concretes. Materiales De Construcción, 73(352), e328. https://doi.org/10.3989/mc.2023.350223

Issue

Section

Research Articles

Funding data