Efecto de la forma de la sección de fibra y la fracción volumétrica sobre las propiedades mecánicas de hormigones reforzados con fibras de acero
DOI:
https://doi.org/10.3989/mc.2023.350223Palabras clave:
Hormigón reforzado con fibras de acero, Propiedades mecánicas, Forma de la sección transversal, Modo de falla, RefuerzoResumen
Este estudio presenta la preparación de hormigones reforzados con fibras de acero (SFRCs) utilizando fibras lisas rectas con secciones en forma de sector anular y fibra corrugada con secciones en forma de rectángulo, respectivamente. Las resistencias a la tracción por flexión y división de ambos SFRCs aumentan con el aumento de la fracción de volumen de fibra, mientras que sus resistencias a la compresión inicialmente aumentan, luego disminuyen y luego aumentan nuevamente. Para la misma fracción de volumen de fibras, las propiedades mecánicas del hormigón armado con fibras kisas son superiores a las de los hormigones reforzados con fibras corrugadas. La introducción de fibra de acero cambia el modo de fallo del hormigón simple durante la flexión, de un modo frágil típico a un modo de fallo dúctil bimodal. En comparación con la fibra corrugada, la fibra lisa tiene una unión de interfaz más fuerte con el hormigón y una mayor resistencia a la fricción para el deslizamiento de la fibra y la posterior extracción. Además, la fibra lisa tiene una mayor capacidad portante, lo que la hace más favorable para mejorar las propiedades mecánicas del hormigón en masa.
Descargas
Citas
Belletti, B.; Cerioni, R.; Meda, A.; Plizzari, G.A. (2008) Design aspects on steel fiber-reinforced concrete pavements. J. Mater. Civ. Eng. 20 [9], 599−607. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:9(599)
Kroviakov, S.; Kryzhanovskyi, V.; Zavoloka, M. (2021) Steel fibrous concrete with high-early strength for rigid pavements repair. IOP Conf. Ser. Mater. Sci. Eng. 1162 [1], 012008. https://doi.org/10.1088/1757-899X/1162/1/012008
Li, X.; Xue, W.P.; Fu, C.; Yao, Z.S.; Liu, X.H. (2019) Mechanical properties of high-performance steel-fibre-reinforced concrete and its application in underground mine engineering. Mater. 12 [15], 2470. https://doi.org/10.3390/ma12152470 PMid:31382558 PMCid:PMC6696420
Massone, L.M.; Nazar, F. (2018) Analytical and experimental evaluation of the use of fibers as partial reinforcement in shotcrete for tunnels in Chile. Tunn, Undergr, Space Technol. 77, 13−25. https://doi.org/10.1016/j.tust.2018.03.027
Wang, X.L.; Fan, F.F.; Lai, J.X.; Xie, Y.L. (2021) Steel fiber reinforced concrete: A review of its material properties and usage in tunnel lining. Struct. 34 [5], 1080−1098. https://doi.org/10.1016/j.istruc.2021.07.086
Xu, H.Y.; Wang, Z.J.; Shao, Z.M.; Jin, H.S.; Li, Z.; Jiang, X.Z.; Cai, L.B. (2020) Experimental study on crack features of steel fiber reinforced concrete tunnel segments subjected to eccentric compression. Mater. Today Commun. 25, 101349. https://doi.org/10.1016/j.mtcomm.2020.101349
Esmaeili, J.; Andalibi, K.; Gencel, O.; Maleki, F.K.; Maleki, V.A. (2021) Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete. Constr. Build. Mater. 271, 121531. https://doi.org/10.1016/j.conbuildmat.2020.121531
Choi, E.; Mohammadzadeh, B.; Hwang, J.H.; Kim, W.J. (2018) Pullout behavior of superelastic SMA fibers with various end-shapes embedded in cement mortar. Constr. Build. Mater. 167, 605−616. https://doi.org/10.1016/j.conbuildmat.2018.02.070
Hao, Y.F.; Hao, H. (2017) Pull-out behaviour of spiral-shaped steel fibres from normal-strength concrete matrix. Constr. Build. Mater. 139, 34−44. https://doi.org/10.1016/j.conbuildmat.2017.02.040
Wille, K.; Kim, D.J.; Naaman, A.E. (2011) Strain-hardening UHP-FRC with low fiber contents. Mater. Struct. 44 [3], 583−598. https://doi.org/10.1617/s11527-010-9650-4
Wille, K.; Naaman, A.E.; El-Tawil, S.; Parra-Montesinos, G.J. (2012) Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. Mater. Struct. 45 [3], 309−324. https://doi.org/10.1617/s11527-011-9767-0
Wu, Z.M.; Shi., C.J.; He., W.; Wu, L.M. (2016) Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr. Build. Mater. 103, 8−14. https://doi.org/10.1016/j.conbuildmat.2015.11.028
Wu, Z.M.; Khayat, K.H.; Shi, C.J. (2018) How do fiber shape and matrix composition affect fiber pullout behavior and flexural properties of UHPC? Cem. Concr. Compos. 90, 193−201. https://doi.org/10.1016/j.cemconcomp.2018.03.021
Sulthan, F. (2020) Influence of steel fiber shapes on fresh and hardened properties of steel fiber reinforcement self-compacting concrete (SFRSCC). IOP Conf. Ser.: Mater. Sci. Eng. 849 [1], 012062. https://doi.org/10.1088/1757-899X/849/1/012062
Yoo, D.Y.; Kim, S.; Kim, J.J.; Chun, B. (2019) An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers. Constr. Build. Mater., 206, 46−61. https://doi.org/10.1016/j.conbuildmat.2019.02.058
Yoo, D.Y.; Park, J.J.; Kim, S.W. (2017) Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber type. Compos. Struct. 174, 263−276. https://doi.org/10.1016/j.compstruct.2017.04.064
Liu, Y.W.; Zhang, Z.H.; Shi, C.J.; Zhu, D.J.; Li, N.; Deng, Y.L. (2020) Development of ultra-high performance geopolymer concrete (UHPGC): Influence of steel fiber on mechanical properties. Cem. Concr. Compos. 112, 103670. https://doi.org/10.1016/j.cemconcomp.2020.103670
Tai, Y.S.; El-Tawil, S. (2017) High loading-rate pullout behavior of inclined deformed steel fibers embedded in ultra-high performance concrete. Constr. Build. Mater. 148, 204−218. https://doi.org/10.1016/j.conbuildmat.2017.05.018
Krasnovsky, R.; Kapustin, D.; Korotkikh, D.; Efishov, L. (2021) Complete diagrams of strain under axial tension of steel-fiber reinforced concrete with different fiber types and content. IOP Conf. Ser.: Mater Sci. Eng. 1030, 012013. https://doi.org/10.1088/1757-899X/1030/1/012013
Rezakhani, R.; Scott, D.A.; Bousikhane, F.; Pathirage, M.; Cusatis, G. (2021) Influence of steel fiber size, shape, and strength on the quasi-static properties of ultra-high performance concrete: Experimental investigation and numerical modeling. Constr. Build. Mater. 296 [1], 123532. https://doi.org/10.1016/j.conbuildmat.2021.123532
Ushida, K.; Nasir, S.; Uehara, T.; Umehara, H. (2004) Effects of fiber shapes and contents on steel fiber reinforcement in high-strength concrete. Concr. Res. Technol. 15 [2], 13−23. https://doi.org/10.3151/crt1990.15.2_13
Feng, H.X.; Jiao, Y.J.; Cao, X.Y.; Liu, J.; Han, Y.H. (2023) Effect of steel fiber on thermal shock resistance of mullite castable. J. Chin. Ceram. Soc. 51 [6], 1565−1571. Retrieved from https://qikan.cqvip.com/Qikan/Article/Detail?id=7110021145.
Ni, K.X.; Zhang, M.J.; Gu, H.Z.; Huang, A.; Li, H.M.; Shao, Z.J. (2017) Steel fiber toughening mullite-SiC castables for coke dry quenching furnace corbel pillar. China's Refractory 26 [1], 24−30. Retrieved fromhttp://www.cnref.cn/EN/Y2017/V26/I1/24.
Wang, D.J.; Yu, S.Z.; Hu, Z.Y.; Duan, C.Y. (2021) Development and application of ρ-Al2O3 bonded mullite-corundum castables. Refrac. Lime. 46 [2], 26−28. Retrieved from http://qikan.cqvip.com/Qikan/Article/Detail?id=7104489221.
Ministry of Water Resources, People's Republic of China. SL352-2020. (2021) Test code for hydraulic concrete. Beijing: China Water and Power Press.
EN 14651: 2005+A1: 2007, (2008) Test method for metallic fibre concrete-measuring the flexural tensile strength. British Standards Institution, London, UK.
Xiong, B.W.; Wang, C.W.; Liu, K.; Wang, Z.J.; Xie, Z.Z.; Zhang, T.; Li, X.T. (2020) Interfacial phase induced load transfer in short carbon fiber reinforced Nb/Nb5Si3 composites. Mater. Sci. Eng. A. 799, 140156. https://doi.org/10.1016/j.msea.2020.140156
Sunaga, D.; Koba, T.; Kanakubo, T. (2021) Modeling of bridging law for bundled aramid fiber-reinforced cementitious composite and its adaptability in crack width evaluation. Mater. 14 [1], 179. https://doi.org/10.3390/ma14010179 PMid:33401650 PMCid:PMC7794925
Naaman, A.E. (2003) Engineered steel fibers with optimal properties for reinforcement of cement composites. J. Adv. Concr. Technol. 1 [3], 241−252. https://doi.org/10.3151/jact.1.241
Zhang, N.; Carrez., P.; Shahsavari, R. (2017) Screw-dislocation-induced strengthening-toughening mechanisms in complex layered materials: the case study of tobermorite. ACS Appl. Mater. Interf. 9 [2], 1496−1506. https://doi.org/10.1021/acsami.6b13107 PMid:28009497
Shuang, F.; Dai, Z.; Aifantis, K.E. (2021) Strengthening in metal/graphene composites: capturing the transition from interface to precipitate hardening. ACS Appl. Mater. Interf. 13 [22], 26610−26620. https://doi.org/10.1021/acsami.1c05129 PMid:34038072
Cheng, L.F.; Wu, S.J.; Zhang, L.T.; Xu, Y.D. (2009) Mechanical self-adaptability of a SiC/PyC/SiC composite during oxidation in air. J. Compos. Mater. 43 [4], 305−313. https://doi.org/10.1177/0021998308098240
Pereira, E.B.; Fischer, G.; Barros, J. (2012) Direct assessment of tensile stress-crack opening behavior of strain hardening cementitious composites (SHCC). Cem. Concr. Res. 42 [6], 834−846. https://doi.org/10.1016/j.cemconres.2012.03.006
Xue, R.; Liu, P.; Zhang, Z.J.; Zhang, N.L.; Zhang, Y.H.; Wang, J.P. (2021) Improvement of toughness of reaction bonded silicon carbide composites reinforced by surface-modified SiC whiskers. Ceram. Int. 47 [13], 18150−18156. https://doi.org/10.1016/j.ceramint.2021.03.133
Zando, R.B.; Mesgarnejad, A.; Pan, C.; Shefelbine, S.J.; Erb, R.M. (2020) Enhanced toughness in ceramic-reinforced polymer composites with herringbone architectures. Compos. Sci. Technol. 204 [1], 108513. https://doi.org/10.1016/j.compscitech.2020.108513
Zhang, K.; Gao, B.Z.; Gong, M.; Tong, Z.Y.; Fan, J.P. (2022) Design of crack deflection induced high toughness laminated Si3N4 ceramics based on hollow oriented one-dimensional microstructure. Ceram. Int. 48 [15], 21370−21377. https://doi.org/10.1016/j.ceramint.2022.04.103
Jang, S.J.; Yun, H.D. (2017) Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete. Compos. Struct. 185, 203−211. https://doi.org/10.1016/j.compstruct.2017.11.009
Liu, W.; Luo, L.; Xu, S.L.; Zhao, H.H. (2014) Effect of fiber volume fraction on crack propagation rate of ultra-high toughness cementitious composites. Eng. Fract. Mech. 124-125, 52−63. https://doi.org/10.1016/j.engfracmech.2014.03.007
Michels, J.; Christen, R.;Waldmann, D. (2013) Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete. Eng. Fract. Mech. 98, 326−349. https://doi.org/10.1016/j.engfracmech.2012.11.004
Wang, Z.L.; Shi, Z.M.; Wang, J.G. (2011) On the strength and toughness properties of SFRC under static-dynamic compression. Compos. Part B-Eng. 42 [5], 1285-1290. https://doi.org/10.1016/j.compositesb.2011.01.027
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.
Datos de los fondos
Natural Science Foundation of Shaanxi Province
Números de la subvención 2017JQ5113