Experimental investigation of the behavior of concrete beams containing recycled materials reinforced with composite rebars





Composite rebar, Glass, Rubber, Recycled materials, Micro-silica


The application of various Fiber Reinforced Polymer (FRP) composite materials is very widespread in the world. The use of recycled materials in concrete, can improve some of the mechanical properties of concrete. In this laboratory research, the behavior of reinforced concrete beams with composite rebars with glass fibers made of concrete containing recycled materials such as glass, rubber and micro-silica with different mixing plans has been investigated. These mixing plans are such that recycled glass and rubber aggregates have replaced a percentage of fine and coarse concrete aggregates, and glass powder and micro-silica have also replaced a percentage of concrete cement. The results showed that the replacement of coarse rubber, glass powder, and micro-silica in concrete materials increases the bending strength and ductility of concrete beam. In examining the microstructure of concrete by Scanning Electron Microscope (SEM) the adhesiveness of the rubber Interfacial Transition Zone (ITZ) in concrete was suitable.


Download data is not yet available.


Hosseini, S.M.; Mostofinejad, D. (2021) Seismic performance of RC short columns retrofitted with a novel system in shear and flexure using CFRP composites. J. Compos. Constr. 25 [5]. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001148

Ali, O.; Bigaud, D.; Riahi, H.S. (2018) Seismic performance of reinforced concrete frame structures strengthened with FRP laminates using a reliability-based advanced approach. Compos. B. Eng. 139, 238-248. https://doi.org/10.1016/j.compositesb.2017.11.051

Hadigheh, S.A.; Mahini, S.S.; Maheri, M.R. (2014) Seismic behavior of FRP-Retrofitted reinforced concrete frames. J. Earthq. Eng. 18 [8], 1171-1197. https://doi.org/10.1080/13632469.2014.926301

Attari, N.; Youcef, Y.S.; Amziane, S. (2019) Seismic performance of reinforced concrete beam-column joint strengthening by frp sheets. Struct. 20, 353-364. https://doi.org/10.1016/j.istruc.2019.04.007

Schützenhofer, S.; Kovacic, I.; Rechberger, H.; Mack, S. (2022) Improvement of environmental sustainability and circular economy through construction waste management for material reuse. Sustain. 14 [17], 11087. https://doi.org/10.3390/su141711087

Lamba, P.; Kaur, D.P.; Raj, S.; Sorout, J. (2022) Recycling/reuse of plastic waste as construction material for sustainable development: a review. Environ. Sci. Pollut. Res. 29, 86156-86179. https://doi.org/10.1007/s11356-021-16980-y PMid:34655383 PMCid:PMC8520077

Terro, M. (2006) Properties of concrete made with recycled crushed glass at elevated temperatures. Build. Environ. 41 [5], 633-639. https://doi.org/10.1016/j.buildenv.2005.02.018

Youssf, O.; Hassanli, R.; Mills, J.E.; Skinner, W.; Ma, X.; Zhuge, Y.; Roychand, R.; Gravina, R. (2019) Influence of mixing procedures, rubber treatment, and fibre additives on rubcrete performance. J. Compos. Scien. 3 [2], 41. https://doi.org/10.3390/jcs3020041

Hassanli, R.; Youssf, O.; Mills, J.E. (2017) Experimental investigations of reinforced rubberised concrete structural members. J. Build. Eng. 10, 149-165. https://doi.org/10.1016/j.jobe.2017.03.006

Al-Tayeb, M.M.; Bakar, B.A.; Ismail, H.; Akil, H.M. (2013) Effect of partial replacement of sand by recycled fine crumb rubber on the performance of hybrid rubberised -normal concrete under impact load: Experiment and simulation. J. Clean. Prod. 59, 284-289. https://doi.org/10.1016/j.jclepro.2013.04.026

Youssf, O.; ElGawady, M.A.; Mills, J.E. (2015) Experimental investigation of crumb rubber concrete columns under seismic loading. Struct. 3, 13-27. https://doi.org/10.1016/j.istruc.2015.02.005

Youssf, O.; ElGawady, M.A.; Mills, J.E. (2016) Static cyclic behaviour of FRP-confined crumb rubber concrete columns. Eng. Struct. 113, 371-387. https://doi.org/10.1016/j.engstruct.2016.01.033

Murad, Y.; Tarawneh, A.; Arar, F.; Al-Zu'bi, A.; Al-Ghwairi, A.; Al-Jaafreh, A.; Tarawneh, M. (2021) Flexural strength prediction for concrete beams reinforced with FRP bars using gene expression programming. Struct. 33, 3163-3172. https://doi.org/10.1016/j.istruc.2021.06.045

Falah Hassan, H.; Kadhim Medhlom, M.; Sinan Ahmed, A.; Husein Al-Dahlaki, M. (2020) Flexural performance of concrete beams reinforced by GFRP bars and strengthened by CFRP sheets. Case Stud. Constr. Mater. 13, e00417. https://doi.org/10.1016/j.cscm.2020.e00417

Al-Sunna, R.; Pilakoutas, K.; Hajirasouliha, I.; Guadagnini, M. (2012) Deflection behaviour of FRP reinforced concrete beams and slabs: an experimental investigation. Compos. B. Eng. 43 [5], 2125-2134. https://doi.org/10.1016/j.compositesb.2012.03.007

Yang, J.M.; Min, K.H.; Shin, H.O.; Yoon, Y.S. (2012) Effect of steel and synthetic fibers on flexural behavior of high-strength concrete beams reinforced with FRP bars. Compos. B. Eng. 43 [3], 1077-1086. https://doi.org/10.1016/j.compositesb.2012.01.044

El-Nemr, A.; Ahmed, E.A.; Benmokrane, B. (2013) Flexural behavior and serviceability of normal-and high-strength concrete beams reinforced with glass fiber-reinforced polymer bars. ACI. Struct. J. 110 [6], 1077. Retrieved from https://www.researchgate.net/publication/256287944. https://doi.org/10.14359/51686162

Yoo, D.Y.; Banthia, N.; Yoon, Y.S. (2016) Flexural behavior of ultra-high-performance fiber reinforced concrete beams reinforced with GFRP and steel rebars. Eng. Struct. 111, 246-262. https://doi.org/10.1016/j.engstruct.2015.12.003

El-Nemr, A.; Ahmed, E.A.; Barris, C.; Benmokrane, B. (2016) Bond-dependent coeffcient of glass-and carbon-FRP bars in normal-and high-strength concretes. Constr. Build. Mater. 113, 77-89. https://doi.org/10.1016/j.conbuildmat.2016.03.005

Rahman, S.H.; Mahmoud, K.; El-Salakawy, E. (2016) Behavior of glass fiber-reinforced polymer reinforced concrete continuous T-beams. J. Compos. Constr. 21 [2], 04016085. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000740

Duic, J.; Kenno, S.; Das, S. (2018) Performance of concrete beams reinforced with basalt fibre composite rebar. Constr. Build. Mater. 176, 470-481. https://doi.org/10.1016/j.conbuildmat.2018.04.208

Abdelkarim, O.I.; Ahmed, E.A.; Mohamed, H.M.; Benmokrane, B. (2019) Flexural strength and serviceability evaluation of concrete beams reinforced with deformed GFRP bars. Eng. Struct. 186, 282-296. https://doi.org/10.1016/j.engstruct.2019.02.024

Hama, S.M.; Mahmoud, A.S.; Yassen, M.M. (2019) Flexural behavior of reinforced concrete beam incorporating waste glass powder. Struct. 20, 510-518. https://doi.org/10.1016/j.istruc.2019.05.012

Eisa, A.S.; Elshazli, M.T.; Nawar, M.T. (2020) Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams. 252, 119078. Constr. Buid. Mater. https://doi.org/10.1016/j.conbuildmat.2020.119078

Shahjalal, M.D.; Islam, K.; Rahman, J.; Ahmed, K.S.; Karim, M.R.; Billah, A.M. (2021) Flexural response of fiber reinforced concrete beams with waste tires rubber and recycled aggregate. 278, 123842. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.123842

Ismail, M.K.; Hassan, A.A.A. (2017) An experimental study on flexural behaviour of large-scale concrete beams incorporating crumb rubber and steel fibres. j. Eng. Struct. 145, 97-108. https://doi.org/10.1016/j.engstruct.2017.05.018

Erfan, A.M.; Hassan, H.E.; Khalil, M.H.; El-Sayed, T.A. (2020) The flexural behavior of nano concrete and high strength concrete usingGFRP. Constr. Build. Mater. 247, 1188664. https://doi.org/10.1016/j.conbuildmat.2020.118664

De Sá, F.R.G.; Silva, F.d.A.; Cardoso, D.C.T. (2020) Tensile and flexural performance of concrete members reinforced with polypropylene fibers and GFRP bars. Compos. Struct. 253, 112784. https://doi.org/10.1016/j.compstruct.2020.112784

Arunbalaji, G.; Nanthakumar, N.; Suganya, R. (2017) Behaviour of reinforced concrete beam containing micro-silica and nano-silica. Int. J. Eng. Technol. 48 [3], 140-146. https://doi.org/10.14445/22315381/IJETT-V48P225

El-Mandouh, M.A.; Kaloop, M.R.; Hu, J.W.; Abd El-Maula, A.S. (2022) Shear strength of nano-silica high-strength reinforced concrete beams. Mater. 15 [11], 3755. https://doi.org/10.3390/ma15113755 PMid:35683055 PMCid:PMC9181018

Jafari, R.; Alizadeh Elizei, M.H.; Ziaei, M.; Esmaeil Abadi, R. (2022) Laboratory study of mechanical performance of concrete containing waste glass and rubber at high temperature. Modar. Civ. Eng. J. 23 [1], 179-192.

Sadiqul Islam, G.M.; Rahman, M.H.; Kazi, M. (2017) Waste glass powder as partial replacement of cement for sustainable concrete practice. Int. J. Sustain. Built Environ. 6 [1], 37-44. https://doi.org/10.1016/j.ijsbe.2016.10.005

Gupta, T.; Chaudhary, S.; Sharma, A.K. (2015) Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. J. Clean. Prod. 112 [1], 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081

Iranian Concrete Code (ABA) - Second revision, (1400), Department of technical and executive affairs of the country, Plan and Budget Organization, Iran.

ASTM C128-22 (2022). Standard test method for relative density (specific gravity) and absorption of fine aggregate. American Society for Testing and Materials (ASTM).

ASTM C127-15 (2015). Standard test method for relative density (specific gravity) and absorption of coarse aggregate. American Society for Testing and Materials (ASTM).

ASTM C150-22 (2022). Standard specification for portland cement. american society for testing and materials. American Society for Testing and Materials (ASTM).

Sgobba, S.; Borsa, M.; Molfetta, M.; Carlo Marano, G. (2015) Mechanical performance and medium-term degradation of rubberized concrete. Constr. Build. Mater. 98, 820-831. https://doi.org/10.1016/j.conbuildmat.2015.07.095

Kiani Oskooi, R.; Maleki, A. (2018) Investigation of the effect of glass powder waste with different granulation of stone materials on concrete strength. Tabriz, Confer.Civ. Eng. 1397, 1.

ASTM C1240-20 (2020). Standard specification for silica fume used in cementitious mixtures. American Society for Testing and Materials (ASTM). https://doi.org/10.1520/C1240-20. https://doi.org/10.1520/C1240-20

ACI-211.1-91. Standard practice for selecting proportions for normal, heavy weight, and, mas concrete. American Concrete Institute (ACI).

ACI 440.1R15. (2015). Guide for the plan and construction of concrete reinforced with FRP bars. Farmington Hills. Michigan.

ACI 318-19 (2019). Building code requirements for structural concrete. American Concrete Institute (ACI).

ASTM C192/C192M-19 (2019). Standard practice for making and curing concrete test specimens in the laboratory. American Society for Testing and Materials (ASTM).

ASTM C172/C172M-17 (2017). Standard practice for sampling freshly mixed concrete. American Society for Testing and Materials (ASTM).

ASTM C511-21 (2021). Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes. American Society for Testing and Materials (ASTM).

ASTM C143/C143M-20 (2020). Standard test method for slump of hydraulic-cement concrete. American Society for Testing and Materials (ASTM).

ASTM C39/C39M−21 (2021). Standard test method for compressive strength of cylindrical concrete specimens. American Society for Testing and Materials (ASTM).

Ganjian, E.; Khorami, M.; Maghsoudi, A. (2009) Scrap-tyre-rubber replacement for aggregate and filler in concrete. Constr. Build. Mater. 23, [5], 1828-1836. https://doi.org/10.1016/j.conbuildmat.2008.09.020

Pacheco-Torgal, F.; Ding, Y.; Jalali, S. (2012) Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview. Constr. Build. Mater. 30, 714-724. https://doi.org/10.1016/j.conbuildmat.2011.11.047

Güneyisi, E.; Gesoglu, M.; Ozturan, T. (2004) Properties of rubberized concretes containing silica fume. Cem. Concr. Res. 34 [12], 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005

Gesoglu, M.; Guneyisi, E. (2007) Strength development and chloride penetration in rubberized concrete with and without rubberized silica fume. Mater. Struct. 40, 953-964. https://doi.org/10.1617/s11527-007-9279-0

ASTM C78/C78M−22 (2022). Standard test method for flexural strength of concrete (using simple beam with third-point loading). American Society for Testing and Materials (ASTM).

ASTM C293/C293M−16 (2016). Standard test method for flexural strength of concrete (using simple beam with center-point loading). American Society for Testing and Materials (ASTM).



How to Cite

Jafari, R., Alizadeh Elizei, M. H., Ziaei, M., & Esmaeil Abadi, R. (2023). Experimental investigation of the behavior of concrete beams containing recycled materials reinforced with composite rebars. Materiales De Construcción, 73(352), e329. https://doi.org/10.3989/mc.2023.352223



Research Articles