Durabilidad y propiedades mecánicas de los hormigones con filer calizo utilizando empaquetamiento de partículas
DOI:
https://doi.org/10.3989/mc.2024.366423Palabras clave:
Migración de cloruros, Durabilidad del hormigón, Empaquetamiento, SostenibilidadResumen
Este estudio tiene el objetivo de presentar alternativas para reducir la demanda de cemento en la producción de hormigón teniendo en cuenta conceptos de empaquetamiento de partículas. y la resistencia a la acción de los cloruros fueron evaluados. Las pruebas realizadas en ese estudio fueron resistencia a la compresión axial, migración de cloruros, absorción capilar y ciclos de humectación y secado en solución de cloruro sódico 1M. Las mezclas que contienen filer calizo presentaron resultados satisfactorios en comparación con la mezcla de referencia con empaquetamiento de partículas. La mezcla con un consumo de cemento de 253,34 kg.m-3 demostró excelentes resultados en términos de resistencia a la compresión axial, índice de aglomerante, absorción capilar y tiempo para despasivación del acero, reforzando el concepto de que la sustitución parcial del cemento por filer calizo produce resultados positivos en esas propiedades. Peores resultados fueron obtenidos para el hormigón con consumo de cemento de 161,86 kg·m-3, debido a su composición con mayor proporción de filer en comparación con el cemento. El monitoreo electroquímico de las barras de acero muestra que el empaquetamiento de los agregados fue esencial para el retardo de la iniciación de la corrosión.
Descargas
Citas
Andrew R.M. 2019. Global CO2 emissions from cement production, 1928-2018. Earth System Science Data. 11 (4): 1675-1710. https://doi.org/10.5194/essd-11-1675-2019
London. Global Construction 2030. 2020. Global Construction Perspectives; Oxford Economics. Retrieved formhttps://www.oxfordeconomics.com/resource/future-of-construction/.
Yu R, Spiesz PR, Brouwers HJH. 2015. Development of ultra-high performance fibre reinforced concrete (UHPFRC): towards an efficient utilization of binders and fibres. Constr. Build. Mater. 79: 273-282. https://doi.org/10.1016/j.conbuildmat.2015.01.050
Kanamarlapudi L, Jonalagadda KB, Jagarapu DCK, Eluru A. 2020. Different mineral admixtures in concrete: a review. SN Appl. Sci. 2: 760. https://doi.org/10.1007/s42452-020-2533-6
BesseyGE. 1938. Procd. Symp. Chem. Cements. Stockholm.
Soroka I, Setter N. 1977. The effect of fillers on strength of cement mortars. Cem. Concr. Res.7 (4): 449-456. https://doi.org/10.1016/0008-8846(77)90073-4
Varhen C, Dilonardo I, Romano RCO, Pileggi RG, Figueiredo AD. 2016. Effect of the substitution of cement by limestone filler on the rheological behaviour and shrinkage of microconcretes. Constr. Build. Mater. 125: 375-386. https://doi.org/10.1016/j.conbuildmat.2016.08.062
Liu SH, Gao ZY, Rao MJ. 2011. Study on ultra-high-performance concrete containing limestone powder. Adv. Mater. Res.Trans Tech Publications Ltd, 2011. 250-253: 686-689. https://www.scientific.net/AMR.250-253.686. https://doi.org/10.4028/www.scientific.net/AMR.250-253.686
Cândido TG, Meira GR, Quattrone M, John M. 2022. Mechanical performance and chloride penetration resistance of concretes with low cement contents. Rev. IBRACON Estrut. Mater. 15 (6): e15608. https://doi.org/10.1590/s1983-41952022000600008
Huang W, Kazemi-Kamyab H, Sun W, Scrivener K. 2017. Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC). Cem. Concr. Compos. 77: 86-101. https://doi.org/10.1016/j.cemconcomp.2016.12.009
Adu-Amankwah S, Zajac M, Stabler C, Lothenbach B, Black L. 2017. Influence of limestone on the hydration of ternary slag cements. Cem. Concr. Res. 100: 96-109. https://doi.org/10.1016/j.cemconres.2017.05.013
Panesar DK, Zhang R. 2020. Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials - A review. Constr. Build. Mater. 251: 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866
Cyr M, Lawrence P, Ringot E. 2006. Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures about compressive strength. Cem. Concr. Res. 36 (2): 264-277. https://doi.org/10.1016/j.cemconres.2005.07.001
Soroka I, Stern N.1976. Calcareous fillers and the compressive strength of portland cement. Cem. Concr. Res. 6 (3): 367-376. https://doi.org/10.1016/0008-8846(76)90099-5
Luna F J, Fernández Á, Alonso MC. (2018). The influence of curing and aging on chloride transport through ternary blended cement concrete. Mater. Construcc. 68 (332): e171. https://doi.org/10.3989/mc.2018.11917
Menéndez G, Bonavetti L, Irassar, EF. 2006. Ternary blended cement concrete. Part I: early age properties and mechanical strength. Mater. Construcc. 56 (284): 55-67. https://doi.org/10.3989/mc.2006.v56.i284.18
Bentz DP, Ardani A, Barrett T, Jones SZ, Lootens D, Peltz MA, Stutzman TSPE, Tanesi J, Weiss WJ. 2015. Multi-scale investigation of the performance of limestone in concrete, Constr. Build. Mater. 75: 1-10. https://doi.org/10.1016/j.conbuildmat.2014.10.042
BerodierE, ScrivenerK. 2014. Understanding the filler effect on the nucleation and growth of CSH. J. Am. Ceram. Soc. 97 (12): 3764-3773. https://doi.org/10.1111/jace.13177
Kakali G, Tsivilis S, Aggeli E, Bati M. 2000. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res. 30 (7): 1073-1077. https://doi.org/10.1016/S0008-8846(00)00292-1
MenendezG, BonavettiV, IrassarEF. 2003. Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Compos. 25 (1): 61-67. https://doi.org/10.1016/S0958-9465(01)00056-7
Weerdt, K, Haha MB, Saout G, Kjellsen KO, Justnes H, Lothenbach B. 2011. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 41 (3): 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014
Ghrici M, Kenai S, Said-Mansour M. 2007. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Compos. 29 (7): 542-549. https://doi.org/10.1016/j.cemconcomp.2007.04.009
Sun J, Chen Z. 2018. Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol. 338: 725-733. https://doi.org/10.1016/j.powtec.2018.07.041
Steiner S, Proske T, Winnefeld F, Lothenbach B. 2022. Effect of limestone fillers on CO2 and water vapour diffusion in carbonated concrete. Cement. 8: 100027. https://doi.org/10.1016/j.cement.2022.100027
MehtaK. 1986. Concrete: structure, properties, and materials. Prentice Hall.
Abushama WJ, Tamimi AK, Tabsh SW, El-Emam MM, IbrahimA, Mohammed AliTK. 2023. Influence of optimum particle packing on the macro and micro properties of sustainable concrete. Sustainability. 15 (19): 14331. https://doi.org/10.3390/su151914331
Oliveira IR. 2000. Particle dispersion and packing: principles and applications in ceramic processing. São Paulo: Making Editorial Art. 224.
Santos RA, Meira GR, Bezerra WVDC, BragaFAV, Pontes DL. 2021. Use of numerical method for optimization of granulometric curves in eco-efficient concrete. Matéria, Rio de Janeiro. 26 (4): e13115. https://doi.org/10.1590/s1517-707620210004.1315
Associação Brasileira de Normas Técnicas. 2018. ABNT NBR 16697: Cimento Portland - Requisitos. ABNT, Rio de Janeiro.
Associação Brasileira de Normas Técnicas. 2017. NBR 16605: Cimento Portland e outros materiais em pó - determinação da massa específica. ABNT, Rio de Janeiro.
Grazia MT, Sanchez LFM, Romano RCO, Pileggi RG. 2019. Investigation of the use of continuous particle packing models (PPMs). On the fresh and hardened properties of low-cement concrete (LCC). systems. Construct. Build. Mater. 195: 524-536. https://doi.org/10.1016/j.conbuildmat.2018.11.051
Associação Brasileira de Normas Técnicas. 2022. NBR 17054: Agregados - determinação da composição granulométrica. ABNT, Rio de Janeiro.
Associação Brasileira de Normas Técnicas. 2021. ABNT NBR 16916 Agregado miúdo - Determinação da densidade e da absorção de água. ABNT, Rio de Janeiro.
Associação Brasileira de Normas Técnicas. 2018. ABNT NBR 5739 Concreto - Ensaio de compressão de corpos de prova cilíndricos. ABNT, Rio de Janeiro.
NT BUILD 492. 1999. Chloride migration coefficient from non-steady-state migration experiments.
Associação Brasileira de Normas Técnicas. 2012. ABNT NBR 9779: Argamassa e concreto endurecidos - Determinação da absorção de água por capilaridade. ABNT, Rio de Janeiro.
Associação Brasileira de Normas Técnicas. 2011. ABNT NBR 7222: Concreto e argamassa - Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. ABNT, Rio de Janeiro.
Page MM, Page CL, Ngala T, Anstice DJ. 2002. Ion chromatographic analysis of corrosioan inhibitors in concrete. Constr. Build. Mater. 16 (2): 73-81. https://doi.org/10.1016/S0950-0618(02)00017-X
Vieira FMP. 2003. Contribuição ao estudo de corrosão de armaduras em concretos aramados com adição de sílica ativa. Tese de doutorado em Engenharia, UFRGS, Porto Alegre - RS.
Silva FG. 2006. Estudo de concretos de alto desempenho frente à ação de cloretos. Tese de Doutorado em Ciência e Engenharia dos Materiais, Escola Politécnica, Universidade de São Paulo, São Carlos - SP.
KishimotoI. 2010. Experimental study on the corrosion condition of steel bars in cracked reinforced concrete specimen. In: International Symposium on the Ageing Management & Maintenance of Nuclear Power Plants, 2010, Tokyo. Proceeding, Tokyo. 166-172.
Angst UM, Vennesland Ø. 2009. Critical chloride content in reinforced concrete - State of the art. Concrete Repair, Rehabilitation and Retrofitting II. Taylor & Francis Group. 311- 317, London. https://doi.org/10.1201/9781439828403.ch41
Angst UM, Elsener B, Larsen CK, Vennesland Ø. 2011. Chloride induced reinforcement corrosion: electrochemical monitoring of initiation stage and chloride threshold values. Corros. Sci. 53 (4): 1451-1464. https://doi.org/10.1016/j.corsci.2011.01.025
Meira GR, Ferreira RR, Jerônimo L, Carneiro AMP. 2014. Comportamento de concreto armado com adição de resíduos de tijolo cerâmico moído frente à corrosão por cloretos. Ambiente Construído. 14 (4): 33-52. https://doi.org/10.1590/S1678-86212014000400004
Ferreira RR. 2015. Análise da indução da corrosão por cloretos em concretos armados com adição de resíduo de tijolo moído a partir de ensaios acelerados. Dissertação de Mestrado - Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Pernambuco (UFPE): Recife - PE.
ASTMC876-09. 2022. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete.
Fahim A, Ghods P, Isgor OB, Thomas MDA. 2018. A critical examination of corrosion rate measurement techniques applied to reinforcing steel in concrete. Mater. Corros. 69 (12): 1784-1799. https://doi.org/10.1002/maco.201810263
Alonso CA, Gulikers CJ, Polder R, Cigna OR, Vennesland MS, Raharinaivo A, Elsener B. 2004. Test methods for on-site corrosion rate meas-urement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 37: 623-643. https://doi.org/10.1007/BF02483292
Bederina M, Makhloufi Z, Bouziani T. 2011. Effect of limestone fillers the physic-mechanical properties of limestone concrete. Phys. Procedia. 21: 28-34. https://doi.org/10.1016/j.phpro.2011.10.005
Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z. 2018. A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Constr. Build. Mater. 181: 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075
Damineli BL, Kemeid FM, Aguiar S, John M. 2010. Measuring the ecoefficiency of cement use. Cem. Concr. Compos. 32 (8): 555-562. https://doi.org/10.1016/j.cemconcomp.2010.07.009
Damineli BL. 2013. Concepts for the formulation of low binder consumption concrete: rheological control, packing, and particle dispersion. São Paulo: Polytechnic School of the University of São Paulo.
Su N, Hsu KC, Chai HW. 2001. A simple mix design method for self-compacting concrete. Cem. Concr. Res. 31 (12): 1799-807. https://doi.org/10.1016/S0008-8846(01)00566-X
Su N, Miao B. 2003. A new method for the mix design of medium strength flowing concrete with low cement content. Cem. Concr. Compos. 25 (2): 215-222. https://doi.org/10.1016/S0958-9465(02)00013-6
Hüsken G, Brouwers HJH. 2008. A new mix design concept for earth-moist concrete: A theoretical and experimental study. Cem. Concr. Res. 38 (10): 1246-1259. https://doi.org/10.1016/j.cemconres.2008.04.002
Abd Elrahman M, Hillemeier B. 2014. Combined effect of fine fly ash and packing density on the properties of high-performance concrete: An experimental approach, Constr. Build. Mater. 58: 225-233. https://doi.org/10.1016/j.conbuildmat.2014.02.024
Kanadasan J, Razak HA. 2014. Mix design for self-compacting palm oil clinker concrete based on particle packing, Materials & Design (1980-2015). 56: 9-19. https://doi.org/10.1016/j.matdes.2013.10.086
Yu R, Van Onna DV, Spiesz P, Yu QL, Brouwers HJH. 2016. Development of ultra light weight fibre reinforced concrete applying expanded waste glass. J. Clean. Prod.112 (1): 690-701. https://doi.org/10.1016/j.jclepro.2015.07.082
Sunayana S, Barai SV. 2017. Recycled aggregate concrete incorporating fly ash: Comparative study on particle packing and conventional method, Constr. Build. Mater. 156: 376-86. https://doi.org/10.1016/j.conbuildmat.2017.08.132
Franco de Carvalho JM, Melo TV, Fontes WC, Batista JOS, Brigolini GJ, Peixoto RAF. 2019. More eco-efficient concrete: An approach on optimization in the production and use of waste-based supplementary cementing materials. Constr. Build. Mater. 206: 397-409. https://doi.org/10.1016/j.conbuildmat.2019.02.054
Ashish DK, Verma SK. 2019. Determination of optimum mixture design method for self-compacting concrete: Validation of method with experimental results. Constr. Build. Mater. 217: 664-678. https://doi.org/10.1016/j.conbuildmat.2019.05.034
Melo CVA, Gomes CC, Moraes KAM. 2019. A study of packing parameters that influence the fresh properties of self-compacting concrete. Cerâmica. 65 (375): 432-442. https://doi.org/10.1590/0366-69132019653752667
Lopes HMT, Peçanha ACC, Castro AL. 2020. Considerações sobre a eficiência de misturas de concreto de cimento Portland com base no conceito de empacotamento de partículas. Revista Matéria. 25(1). https://doi.org/10.1590/s1517-707620200001.0874
Andrade, C. 1993. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem. Concr. Res. 23 (3): 724-742. https://doi.org/10.1016/0008-8846(93)90023-3
Luna FJ, Fernández Á, Alonso MC. 2018. The influence of curing and aging on chloride transport through ternary blended cement concrete. Mater. Construcc. 68 (332): e171. https://doi.org/10.3989/mc.2018.11917
Nilsson MH, Ngo Gjørv OE.1998. High-performance repair materials for concrete structure in the port of Gothenburg, in concrete under severe conditions 2: Environment and loading. Proceedings of the Second International Conference on Concrete Under Severe Conditions. 2: 1193-1198.
Mehta K, Monteiro JM. 2014. Concrete: microstructure, properties, and materials. 4th ed. New York: McGraw-Hill Education.
Jerônimo L., Meira GR, FilhoL CS. 2018. Performance of self-compacting concrete with wastes from heavy ceramic industry against corrosion by chlorides. Constr. Build. Mater. 169: 900-910. https://doi.org/10.1016/j.conbuildmat.2018.03.034
Ribeiro DV, Labrincha JA, Morelli MR. 2012. Effect of the addition of red mud on the corrosion parameters of reinforced concrete. Cem. Concr. Res .42 (1): 124-133. https://doi.org/10.1016/j.cemconres.2011.09.002
Medeiros MHF, Rocha FC, Medeiros-Junior RA. 2017. Corrosion potential: influence of moisture, water-cement ratio, chloride content, and concrete cover. Rev. IBRACON Estrut. Mater. 10(4): 864-885. https://doi.org/10.1590/s1983-41952017000400005
Tian L, Dai S, Yao X, Zhu H, Wu Q, Liu Z, Cheng S. 2022. Effect of nucleation seeding and triisopropanolamine on the compressive strength, chloride binding capacity and microstructure of cement paste. J. Build. Eng.52: 104382. https://doi.org/10.1016/j.jobe.2022.104382
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.