Toughness increase of self compacting concrete reinforced with polypropylene short fibers


  • G. Melián IE University
  • G. Barluenga Universidad de Alcalá de Henares
  • F. Hernández-Olivares Universidad Politécnica de Madrid



concrete, fiber reinforce, pozzolana, physical properties, mechanical properties


Increases in bending tests by the addition of low volume fractions of Polypropylene (PP) Short Fibers PP. These toughness increases are similar to those attained by Fiber Reinforced Concrete (FRC) referred elsewhere as Engineered Cementitious Composites (ECC), having some ductility and strain hardening in direct tensile and flexural tests. Concretes mixtures were manufactured using natural pozzolanic blended Portland cement, volcanic crushed coarse aggregates and fine sand from Sahara desert dunes (0-1 mm) from Canary Islands quarries and sand reservoirs, respectively, besides ordinary siliceous sand (0-4 mm) and fly ash from an anthracite-coal heat generator.


Download data is not yet available.


(1) Balaguru, P. N.; Shah, S. P.: “Plastic and early drying shrinkage”, Fiber Reinforced Cement Composites, McGraw-Hill (1992).

(2) Barluenga, G.; Hernández-Olivares, F.: “Cracking control of concretes modified with short AR-glass fibers at early age. Experimental results on standard concrete and SCC”, Cem Concr Res, vol. 37, (2007), pp. 1624-1638. doi:10.1016/j.cemconres.2007.08.019

(3) Zhu, W.; Gibbs, J. C.; Bartos, P. J. M.: “Uniformity of in situ properties of self-compacting concrete in full-scale structural elements”, Cem. Concr. Comp, vol. 23, (2001), pp. 57-64. doi:10.1016/S0958-9465(00)00053-6

(4) Gettu, R.: “Fibre Reinforced Concrete: design and applications”, BEFIB 2008, Bagneux, France, RILEM Publications S.A.R.L.; PRO60 (2008).

(5) Li, V. C.: “From micromechanics to structural engineering–the design of cementitious composites for civil engineering applications”, JSCE J Struct Mech Earthq Eng, vol. 10, nº 2 (1993), pp. 37-48.

(6) Prisco, M. di; Plizzari, G.; Vandewalle, L.: “Fibre reinforced concrete: new design perspectivas”, Materials and Structures, RILEM (2009) Online First.

(7) Bentur, A.; Mitchell, D.: “Material performance lessons”, Cem Concr Res, vol. 38 (2008), pp. 259-272. doi:10.1016/j.cemconres.2007.09.009

(8) EHE 2008. RD 1247/2008. BOE 203 (22/08/2008; Supplement), pp. 35176.

(9) Tafraoui, A.; Lebaili, S.; Slimani, A.: “Study Physico-Chemical of the Sand of the Western Erg of the Area of Saoura (Western South Algeria)”, Research J. of Applied Sciences 1 (1-4): 1-6 (2006), Medwell Online, 2006.

(10) Armesto, L.; Merino, J. L.; Cabanillas, A.: Characterization of AFBC and PFBC residues. 8th International Conference on Coal Science. Proceedings (ISBN: 0-444-82227-5). Pajares, J. A.; Tascon, J. M.; Eds. Elsevier. Oviedo-Spain (1995).

(11) Lomoschitz, A. et al.: “Basaltic Lapilli Used for Construction Purposes in the Canary Islands, Spain”, Environmental and Engineering Geoscience, vol. 12, nº 4 (2006), pp. 327-337. doi:10.2113/gseegeosci.12.4.327

(12) Bérubé, M. A.; Duchesne, J.; Dorion, J. F.; Rivest, M.: “Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali–silica reactivity”, Cement and Concrete Research, vol. 32 (2002), pp. 1215–1227. doi:10.1016/S0008-8846(02)00766-4




How to Cite

Melián, G., Barluenga, G., & Hernández-Olivares, F. (2010). Toughness increase of self compacting concrete reinforced with polypropylene short fibers. Materiales De Construcción, 60(300), 83–97.



Research Articles

Most read articles by the same author(s)