Improved cement mortars by addition of carbonated fly ash from solid waste incinerators


  • O. López-Zaldívar School of Building. Technical University of Madrid (UPM)
  • P. L. Mayor-Lobo School of Building. Technical University of Madrid (UPM)
  • F. Fernández-Martínez School of Industrial Design and Engineering. Technical University of Madrid (UPM)
  • F. Hernández-Olivares School of Architecture. Technical University of Madrid (UPM)



Mortar, Fly ash, Calcium carbonate, Aggregate, Calcium aluminate cement


This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA) stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.


Download data is not yet available.


1. Lam, CHK. (2010) Use of incineration MSW ash: A review. Sustainability 2 [7], 1943–1968.

2. Ferreira, C.; Ribeiro, A.; Ottosen, L. (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater. 96 [2–3], 201–216.

3. Ferreira, C.; Ribeiro, A.; Ottosen, L. (2003) Heavy metals in MSW incineration fly ashes. J Phis IV. Vol. 107.

4. European Commission. Commission Decision on the European List of Waste (COM 2000/532/EC) and Annex III to Directive 2008/98/EC (2008).

5. Iacovidou, E.; Ohandja, D.; Gronow, J.; Voulvoulis, N. (2012) The household use of food waste disposal units as a waste management option: A review. Crit Rev Environ Sci Technol 42 [14], 1485–1508.

6. Mata-Alvarez, J.; Dosta, J.; Macé, S.; Astals, S. (2011) Codigestion of solid wastes: A review of its uses and perspectives including modeling. Crit Rev Biotechnol 31 [2], 99–111. PMid:21351815

7. Battistoni, P.; Cola, E.; Fatone, F.; Bolzonella, D.; Eusebi, A.L. (2007) Micropollutants removal and operating strategies in ultrafiltration membrane systems for municipal wastewater treatment: Preliminary results. Ind Eng Chem Res 46 [21], 6716–6723.

8. Hjelmar, O. (1996) Disposal strategies for municipal solid waste incineration residues. J Hazard Mater 47 [1–3], 345–368.

9. Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P. (2003) Management of municipal solid waste incineration residues. Waste Manage 23 [1], 61–88.

10. Mangialardi, T. (2003) Disposal of MSWI fly ash through a combined washing-immobilisation process. J Hazard Mater 98 [1–3], 225–240.

11. Mangialardi, T. (2004) Effects of a washing pre-treatment of municipal solid waste incineration fly ash on the hydration behaviour and properties of ash-Portland cement mixtures. Adv Cem Res 16 [2], 45–54.

12. Pan, J.R.; Huang, C.; Kuo, J.; Lin, S. (2008) Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Manage 28 [7], 1113–1118. PMid:17627805

13. Andreola, F.; Barbieri, L.; Hreglich, S.; Lancellotti, I.; Morselli, L.; Passarini, F. (2008) Reuse of incinerator bottom and fly ashes to obtain glassy materials. J Hazard Mater 5/30, 153 [3], 1270–1274. PMid:17980961

14. Haiying, Z.; Youcai, Z.; Jingyu, Q. (2007) Study on use of MSWI fly ash in ceramic tile. J Hazard Mater 3/6, 141 [1], 106–114. PMid:16889889

15. Ginés, O.; Chimenos, J.M.; Vizcarro, A.; Formosa, J.; Rosell, J.R. (2009) Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. J Hazard Mater 9/30 169 [1–3], 643–650. PMid:19427118

16. Mangialardi, T.; Panei, L.; Piga, L. (2004) Cement-based immobilisation of municipal incinerator fly ash and reuse of solidified products as a construction material. Wit Trans Ecol Envir II, 35.

17. Quina, M.J.; Bordado, J.C.M.; Quinta-Ferreira, R.M. (2014) Stabilisation/solidification of APC residues from MSW incineration with hydraulic binders and chemical additives. J Hazard Mater 1/15 264 [0], 107–116. PMid:24291664

18. De Casa, G.; Mangialardi, T.; Piga, L. (2004) Production of artificial aggregates from ceramic processing of municipal incinerator fly ash. Wit Trans Ecol Envir II, 45.

19. Mangialardi, T. (2001) Sintering of MSW fly ash for reuse as a concrete aggregate. J Hazard Mater 87 [1–3], 225–239.

20. Navarro-Blasco, I.; Duran, A.; Sirera, R.; Fernández, J.M.; Alvarez, J.I. (2013) Solidification/stabilization of toxic metals in calcium aluminate cement matrices. J Hazard Mater 9/15 260 [0], 89–103. PMid:23747467

21. Chinchón Yepes, S.; Sanjuán Barbudo, M.A. (2008) El Cemento de Aluminato de Calcio y sus prefabricados. Editorial Universidad de Alicante.

22. Qi Na, S.; Jing Miao, L.; Bao Quan, H.; Ji Bing, W. (2012) Application of Sulfoaluminate Cement for Solidification/Stabilization of Fly Ash from Municipal Solid Waste Incinerators. Appl Mech Mater 178–181, 795–798.

23. Puertas, F.; Fernández-Carrasco, L.; Blanco-Varela, M.T.; Vázquez, T.; De La Fuente, A. (1996) Influence of KOH solution on the hydration and carbonation of high alumina cement mortars. J Mater Sci 31 [11], 2819–2827.

24. Chang, J.C. (1990) Solubility Product Constants. CRC Handbook of Chemistry and Physics. 71st Edition, ed. Boca Raton, FL.

25. Aubert, J.E.; Husson, B.; Sarramone, N. (2006) Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement. Part 1: Processing and characterization of MSWI fly ash. J Hazard Mater 136 (3), 624–631. PMid:16442718

26. Aubert, J.E.; Husson, B.; Sarramone, N. (2007) Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement. Part 2. Mechanical strength of mortars and environmental impact. J Hazard Mater 146 [1–2], 12–19.

27. European Union. Council Directive 1999/31/EC on the landfill of waste. Official Journal L 182, 1–19. 16 July 1999.

28. European Union. Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills pursuant to article 16 of and Annex II to Directive 1999/31/EC. Official Journal of the European Union L 11, 27–49. 16 January 2003.

29. Cinquepalmi, M.A.; Mangialardi, T.; Panei, L.; Paolini, A.E.; Piga, L. (2008) Reuse of cement-solidified municipal incinerator fly ash in cement mortars: Physico-mechanical and leaching characteristics. J Hazard Mater 151 [2–3], 585–593. PMid:17658684

30. Lima, A.T.; Ottosen, L.M.; Ribeiro, A.B. (2012) Assessing fly ash treatment: Remediation and stabilization of heavy metals. J Environ Manage 95 (SUPPL.), S110-S115. PMid:21167631

31. Rémond, S.; Pimienta, P.; Bentz, D.P. (2002) Effects of the incorporation of Municipal Solid Waste Incineration fly ash in cement pastes and mortars: I. Experimental study. Cem Concr Res 32 [2], 303–311.

32. Rémond, S.; Bentz, D.P.; Pimienta, P. (2002) Effects of the incorporation of Municipal Solid Waste Incineration fly ash in cement pastes and mortars - II: Modeling. Cem Concr Res 32 [4], 565–576.

33. Lo, Y.; Lee, H.M. (2002) Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy. Build Environ 5, 37 [5], 507–514.

34. Chang, C.; Chen, J. (2006) The experimental investigation of concrete carbonation depth. Cem Concr Res 9, 36 [9], 1760–1767.

35. Filippov, L.; Thomas, F.; Filippova, I.; Yvon, J.; Morillon-Jeanmaire, A. (2009) Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases. J Hazard Mater 11/15, 171 [1–3], 731–738. PMid:19631465

36. Barbosa, R.; Lapa, N.; Lopes, H.; Gulyurtlu, I.; Mendes, B. (2011) Stabilization/solidification of fly ashes and concrete production from bottom and circulating ashes produced in a power plant working under mono and co-combustion conditions. Waste Manage 0, 31 [9–10], 2009–2019. PMid:21605964

37. Zornoza, E.; Payá, J.; Garcés, P. (2008) Chloride-induced corrosion of steel embedded in mortars containing fly ash and spent cracking catalyst. Corros Sci 6, 50 [6], 1567–1575.

38. Ministerio de Fomento. Secretaría General Técnica. EHE-2008. Instrucción de Hormión Estructural. Serie Normativa. 2010; 4ª Edición.

39. Vedalakshmi, R.; Sundara Raj, A.; Srinivasan, S.; Ganesh Babu, K. (2003) Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique. Thermochim Acta 12/5, 407 [1–2], 49–60.

40. Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. (2009) Characterisation and use of biomass fly ash in cement-based materials. J Hazard Mater 12/30, 172 [2–3], 1049–1060. PMid:19699034

41. Sepulcre-Aguilar, A.; Hernández-Olivares, F. (2010) Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem Concr Res 1, 40 [1], 66–76.

42. Gazulla, M.F.; Gómez, M.P.; Ordu-a, M.; Silva, G. (2005) Caracterización química, mineralógica y térmica de boratos naturales y sintéticos. Boletín de la Sociedad Espa-ola de Cerámica y Vidrio 44 [1], 21–31.

43. Gunasekaran, S.; Anbalagan, G. (2008) Spectroscopic study of phase transitions in natural calcite mineral. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 4, 69 [4], 1246–1251. PMid:17913574

44. Taylor, H.F.W. (1997) Cement Chemistry. Thomas Telford Ltd; 2nd Edition.

45. Wang, L.; Jin, Y.; Nie, Y. (2010) Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca. J Hazard Mater 174 [1–3], 334–343. PMid:19853377

46. Kessler, B.; Rollet, M.; Sorrentino, F. (1992) Microstructure of cement pastes as incinerator ash host. Proceedings of the first international Symposium on cement industry solution to waste management. Calgary. Pp: 235–251.

47. Péra, J.; Ambroise, J. (2004) New applications of calcium sulfoaluminate cement. Cem Concr Res 34 [4], 671–676.

48. Klemm, W.; Siedel, H. (2002) Evaluation of the origin of sulphate compounds in building stone by sulphur isotope ratio. Geol Soc Sp 205, 419–429.

49. Auer, S.; Kuzel, H.; Pöllmann, H.; Sorrentino, F. (1995) Investigation on MSW fly ash treatment by reactive calcium aluminates and phases formed. Cem Concr Res 25 [6], 1347–1359.



How to Cite

López-Zaldívar, O., Mayor-Lobo, P. L., Fernández-Martínez, F., & Hernández-Olivares, F. (2015). Improved cement mortars by addition of carbonated fly ash from solid waste incinerators. Materiales De Construcción, 65(319), e062.



Research Articles