Controlling crystallization damage by the use of salt inhibitors on Malta’s limestone

Authors

  • J. Cassar Institute for Masonry and Construction Research, University of Malta, Msida
  • A. Marrocchi Department of Chemistry, University of Perugia, Perugia
  • M. L. Santarelli CISTeC Research Center in Science and Technology fore the Conservation in Cultural Heritage, University of Rome “La Sapienza”, Rome
  • M. Muscat Faculty of Architecture and Civil Engineering, University of Malta, Msida

DOI:

https://doi.org/10.3989/mc.2008.v58.i289-290.83

Keywords:

Salts, crystallization inhibitors, deterioration, Globigerina Limestone, Malta

Abstract


The main building stone in the Maltese Islands is the Globigerina Limestone, of which the Lower member is commonly used. This occurs in two types, the durable franka and the more easily weathered soll. Two types of fresh franka (bajda -white- and safra -yellow-), as well as fresh soll stone blocks, were obtained, based on the identification by quarry owners. Their designation was confirmed by geochemistry. Physical and mechanical properties of the three were investigated, including uniaxial compressive strength, water absorption by capillarity, permeability and porosimetry. Porosimetry results confirmed outcomes of previous research work. Soll was found to have a lower overall porosity, but a high percentage of small pores with practically no large pores. Some of the tested stones were then treated with a non-toxic phospho-organic compound containing carboxylic moieties as a salt inhibitor and the corresponding non-phosphorylated compound, as aqueous solutions at different concentrations. Both treated and untreated stones were then subject to salt crystallization tests, using sodium sulphate in different concentrations. For the untreated stones, even after only one salt cycle, faster and more pronounced deterioration was observed for the soll samples as opposed to the franka ones. In the case of the treated stones, less deterioration with almost no damage was observed as opposed to non-treated ones. The presence of even very low concentrations of the inhibitor thus helps crystallization to occur on the stone surface and not within the pores. These encouraging results led to the conclusion that salt inhibitors can be used to treat salt-infested stone. Further research in this respect, also using NaCl/NaHCO3, is continuing.

Downloads

Download data is not yet available.

References

1. Cassar, J.: “Comparing visual and geochemical classification of limestone types: the Maltese Globigerina Limestone”. 10th International Congress on Deterioration and Conservation of Stone, 27 June – 2 July, 2004, Stockholm, Sweden, (2004), pp. 569-577.

2. Buckley, H.E.: Crystal Growth, Chapman & Hall, London, 1952.

3. Öner, M., Doğan, Ö., Öner, G.: “The influence of polyelectrolytes architecture on calcium sulphate dehydrate growth retardation”. Journal of Crystal Growth, Vol. 186 (1998), pp. 427-437. doi:10.1016/S0022-0248(97)00518-6

4. Van der Leeden, M.C., Van Rosmalen, G.M.: “Adsorption behaviour of polyelectrolytes on barium sulphate crystals”. Journal of colloid and interface science, Vol.171, (1995), pp.142-149. doi:10.1006/jcis.1995.1160

5. Marrocchi, A., Taticchi, A., Santarelli, M.L., Minuti, L., Broggi, A.: “Inibitori della crescita di cristalli di solfato di sodio in materiali lapidei. 1.” Science and Technology for Cultural Heritage, Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma, no 1/2, (2006), pp. 101-108.

6. Marrocchi, A., Taticchi, A., Santarelli, M.L., Minuti, L., Broggi, A., Garibaldi, V.: “Acidi organici quali inibitori della cristallizzazione di sali nei materiali lapidei. 2.” Science and Technology for Cultural Heritage, Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma, no 1/2, (2006), pp.109-114.

7. Marrocchi, A., Taticchi, A., Santarelli, M.L., Broggi, A., Minuti, L., Librando, V.: “Acidi organici quali inibitori della cristallizzazione del cloruro di sodio e di miscele cloruro di sodio-solfato di sodio nei materiali lapidei porosi. 3.” Science and Technology for Cultural Heritage, Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma, no 1/2, (2006), pp.115-123.

8. Marrocchi, A., Santarelli, M.L., Taticchi, A., Broggi, A., Minuti, L.: “New products for the inhibition of salt efflorescences in masonries”. Proc. Workshop Argamassas de reboco para paredes antigas sujeitas à acção de sais solúveis (Lisbon, LNEC, 14-15 February 2005). National Laboratory for Civil Engineering (LNEC), Lisbon, (2006)

9. Rodriguez-Navarro, C., Linares-Fernandez, L., Doehne, E., Sebastian, E.: “Effects of ferrocyanide ions on NaCl crystallization in porous stone”. Journal of Crystal Growth, Vol. 243, (2002), pp. 503-516. doi:10.1016/S0022-0248(02)01499-9

10. Rodriguez-Navarro, C., Doehne, E., Sebastian, E.: “Influencing crystallization damage in porous materials through the use of surfactants: experimental results using sodium dodecylsulfate and cetyldimethylbenzylammonium chloride”. Langmuir, Vol.16, (2000), pp. 947-954 doi:10.1021/la990580h

11. Selwitz, C., Doehne, E.: “The evaluation of crystallization modifiers for controlling salt damage to limestone”. Journal of Cultural Heritage, Vol. 3, (2002), pp. 205-216. doi:10.1016/S1296-2074(02)01182-2

12. Houck, J., Scherer, G.W.: “Controlling stress from salt crystallization”. Proceedings of 16th European Conf. Fracture, Alexandropoulis, Greece, (2006). In print.

13. Cassar, J., Vella, A.J.: “Methodology to identify badly weathering limestone using geochemistry: case study on the Lower Globigerina Limestone of the Maltese islands”. Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 36, (2003), pp. 85-96. doi:10.1144/1470-923602-007

14. BS EN 1926: 1999: Natural Stone Test Methods: Determination of Compressive Strengths.

15. Normal 4/80: Misura della Distribuzione del Volume dei Pori in Funzione del loro Diametro, 1980.

16. UNI 10859:2000 (replaces Normal 11/85): Materiali lapidei naturali ed artificiali - Determinazione dell'assorbimento dell'acqua per capillarità.

17. Cachia J.: “The mechanical and physical properties of the Globigerina Limestone as used in local masonry construction”. B.E.&A. dissertation (unpublished), University of Malta, 1985.

18. Farrugia, P.: “Porosity and related properties of local building stone”. B.E.&A. dissertation (unpublished), University of Malta, 1993.

19. Fitzner, B., Heinrichs, K., Volker, M.: “Model for salt weathering at Maltese Globigerina Limestones“. Origin, Mechanisms and Effects of Salt on Degradation of Monuments in Marine and Continental Environments. Proceedings, European Commission Research Workshop on Protection and Conservation of the European Cultural Heritage, Bari, Italy. Research Report, 4, (1995), pp. 331-344.

20. Rossi-Manaresi, R., Tucci, A.: “Pore structure and the disruptive or cementing effect of salt crystallization in various types of stone”. Studies in Conservation, Vol. 36, (1991), pp. 53-58 doi:10.2307/1506452

21. Vanzini, M., Lucarelli, L.: “How particle size distribution, surface area and pore size relate”. Proceedings of the Workshop: Porosità e Porosimetria: importanza, implicazioni e sviluppo nel settore dei beni culturali, ICCROM, Rome, 2000, Ed. Ernesto Borrelli.

22. Vanzini, M., Lucarelli, L.: “Porosity Investigation by mercury porosimetry: theory, applications and interpretations”. Proceedings of the Workshop: Porosità e Porosimetria: importanza, implicazioni e sviluppo nel settore dei beni culturali, ICCROM, Rome, 2000, Ed. Ernesto Borrelli.

Downloads

Published

2008-06-30

How to Cite

Cassar, J., Marrocchi, A., Santarelli, M. L., & Muscat, M. (2008). Controlling crystallization damage by the use of salt inhibitors on Malta’s limestone. Materiales De Construcción, 58(289-290), 281–293. https://doi.org/10.3989/mc.2008.v58.i289-290.83

Issue

Section

Research Articles

Most read articles by the same author(s)