Experimental analysis of temperature profiles in ceramic brickwork elements subjected to high temperatures

Authors

  • M. E. Maciá Universidad San Pablo CEU
  • A. Rolando Universidad Politécnica de Madrid

DOI:

https://doi.org/10.3989/mc.2013.05312

Keywords:

brickwork masonry, high temperatures, temperature profiles, thermo mechanical behavior

Abstract


This article discusses heat transfer through a brick element in order to know the thermal behavior of onedimensional brickwork masonry samples exposed to high temperatures. The object of the tests is to build time-temperature curves according to different thermal steps in transient to experimentally determine the temperature profiles in the interior of a wall. Through this study, it is possible to demonstrate absolute moisture of a factory item from 300 °C (variation of temperatures in the interior of the element), avoid the associated phenomenon of evaporation of water during the thermal process as well as to obtain profiles of temperatures that help calculate the cross section of a factory element subjected to high temperatures.

Downloads

Download data is not yet available.

References

(1) Lie, T.T.: Fire and Building, Applied Science Publishers. Ltd., London, 276 pp. (1972).

(2) Malhotra, H.L.: Properties of materials. Design of fire-resisting structures. Surrey University Press. I.S.B.N: 0-903384-28-0, pp.: 48-53, 75-81 (1982).

(3) Harmathy, T.: Properties of building materials: Bases for fire safety design. ISSN: 1-85166-012-7. Design of structures against fire. Proceedings of the International Conference on Design of structures against fire, held at Aston University, Birmingham. 15 and 16 April 1986, pp.: 87-104 (1986).

(4) Schneider U.: Modelling of concrete behaviour at high temperatures. ISSN: 1-85166-012-7. Design of structures against fire. Proceedings of the International Conference on Design of structures against fire, held at Aston University, Birmingham. 15 and 16 April 1986, pp.: 53-69 (1986).

(5) Gawin, D.; Majorana, C.E.; Schrefler, B.A.: Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mechanics of cohesive-frictional materials. n. 4, pp.: 37-74 (1999). http://dx.doi.org/10.1002/(SICI)1099-1484(199901)4:1<37::AID-CFM58>3.0.CO;2-S

(6) Cerny, R.; wood, J.; J. Podebradska, J.; et to the: The effect of compressive stress on thermal and hygric properties of Portland cemen mortar in wide temperature and moisture ranges. Cem. Concr. Res. 30, pp.: 1267-1276 (2000). http://dx.doi.org/10.1016/S0008-8846(00)00310-0

(7) Boussa, H.; Mounajed, G.; Menou, A.; Grondin, J.: Micro structural origin of the app.arent thermal transient creep of concrete at high temperature. Internal Report. CSTB. France (2003).

(8) Cerny, R.: Properties of cementitious composites at high temperatures. Thermophysics 2008. Kocovce, pp.: 15-25 (2008).

(9) Lawrence, S.J.; Gnanakrishnan, N.: The Fire Resistance of Masonry Walls. An Overview. First National Structural Engineering Conference. Melbourne, 26-28 August (1987).

(10) Gnanakrishnan, N.; Lawther, R.: Some aspects of the fire performance of single leaf masonry construction. International symposium on fire for building structures and safety engineering, Melbourne. The Institution of Engineers Australia. National Conference Publication No. 89/16, pp.: 93-99 (1989).

(11) Hu X.F.; Lie, T.T., Polomark, G.M.; MacLaurin, J.W.: Thermal properties of building materials at elevated temperatures. National Research Council Canada. Internal report (1993) Nº.643.

(12) Hahn, C.: Experience of Fire Behaviour of Masonry. 10th International Brick and block Masonry Conference. Bowdin Coll, Calgary, Canada, Jul 05-07, 1994, pp.: 1089-1092 (1994).

(13) Nguyen,T.; Chammas, R.; Meftah, F.; Mebarki, A.: The behaviour of masonry walls subjected to fire: Modelling and parametrical studies in the case of hollow burnt-clay bricks. Fire Safety Journal No. 44, pp.: 629-641 (2009). http://dx.doi.org/10.1016/j.firesaf.2008.12.006

(14) K. Wesche, K.; Ilantzis, A.: General recommendations for methods of testing load bearing walls. Materials and Structures, RILEM, pp.: 433-445 (1980).

(15) Mann, W.; ATS, M.: Investigations on the effect of different forms of test samples to test the compressive strength of masonry. Proc. 10th Int. Brick and Block Masonry Conf. Calgary, Alberta, pp.: 1305-1313 (1994).

(16) Piet 70: factory works. Requirements of the Eduardo Torroja Institute. Madrid (1971).

(17) ASTM C1314 - 11a: Standard Test Method for Compressive Strength of Masonry Prisms. American Society for Testing and Materials. ASTM International. Dec. (2011).

(18) CRD-C 643-01: Standard Test Methods for Compressive Strength of Masonry Prisms. http://www.wes.army.mil/SL/MTC/handbook/CRD_C643.pdf

(19) UNE EN 1996-1-2:2005. Project of factory structures. Part 1-2: General rules. Structural design in case of fire. AENOR.

(20) Khalaf, F. M.; Hendry, A. W.; Fairbairn, D.R.: Study of the compressive strength of blockwork masonry ACI Structural Journal., pp.: 367-375 (1990).

(21) Purkiss, J.A.: Fire safety engineering. Design of structures. Ed. Butterworth Heinemann. I.S. B:n: 0-7506-0609-6 (1996).

(22) Vermeltfoort, A.: Brick-mortar interaction in masonry under compression. Eindhoven University of Technology. The Netherlands. ISBN: 90-68-14-582-7 (2005).

(23) García, D.: Experimental and numerical analysis of stone masonry walls strengthened with advanced composite materials. Doctoral Thesis. University of the Basque country, pp.: 247 (2009).

(24) Macia, M.E.; Rolando, A.: Young Modulus variation of a brickwork masonry element submitted to high temperatures. Mater. Construcc., vol. 63, nº 309, pp.:105-116. ISSN: 0465-2746 (2012).

(25) Grant, C.; Pagni, P.J.: Thermal and mechanical behaviour of building structures at fire exposure. Fire safety science: Proceedings of the first international symposium. ISBN: 0-89116-456-1, pp.: 237-247 (1986).

(26) Cooke, G.M.E.; Virdi K.S.; Jeyarupalingam, N.: (1996): The thermal böwing of brick walls exposed to fire on one side. Proceedings of the Interflam´96 International Conference. Cambridge. Published by Inerscience communications. Ltd, London, pp.: 915-919.

(27) Nadjai, A.: Behaviour of masonry walls in fire situations compartment. Third International Workshop Structures in Fire. Ottawa, May 2004. S3-1 paper, pp.: 99-117 (2004).

(28) Welch, S.: Developing a model for thermal performance of masonry exposed to fire. First International Workshop Structures in fire. Copenhagen-June (2000).

(29) Harmathy, T.: Properties of building materials: Bases for fire safety design. ISSN: 1-85166-012-7. Design of structures against fire. Proceedings of the International Conference on Design of structures against fire, held at Aston University, Birmingham, pp.: 87-104 (1986).

(30) Nadjai, A.; O'Garra, M.; Ali, F.A.; Laverty, D. A numerical model for the behaviour of the masonry under elevated temperatures. Fire and Materials, 27 (DOI: 10.1002/fam.824), pp.: 163-182 (2003). http://dx.doi.org/10.1002/fam.824

(31) Gnanakrishnan, N.; Lawther, R.: Some aspects of the fire performance of single leaf masonry construction. International symposium on fire for building structures and safety engineering, Melbourne. The Institution of Engineers Australia. National Conference Publication No. 89/16, pp.: 93-99 (1989).

Downloads

Published

2013-12-30

How to Cite

Maciá, M. E., & Rolando, A. (2013). Experimental analysis of temperature profiles in ceramic brickwork elements subjected to high temperatures. Materiales De Construcción, 63(312), 539–552. https://doi.org/10.3989/mc.2013.05312

Issue

Section

Research Articles