Overview of recent work on self-healing in cementitious materials
DOI:
https://doi.org/10.3989/mc.2014.05313Keywords:
Self-healing, Unhydrated cement nuclei, Cracks, Autogenous healing, Autonomous healingAbstract
Cracks, especially microcracks, in concrete are of paramount importance to the durability and the service life of cementitious composite. However, the self-healing technology, including autogenous healing and autonomous healing, is expected to be one of effective tools to overcome this boring problem. In this paper, we focus on the autogenous healing of concrete material and a few of recent works of autonomous healing are also mentioned. The durability and the mechanical properties improved by the self-healing phenomenon are reviewed from experimental investigation and practical experience. Several aspects of researches, such as autogenous healing capability of an innovative concrete incorporated geo-materials, self-healing of engineered cementitious composite and fire-damaged concrete, effect of mineral and admixtures on mechanism and efficiency of self-healing concrete are summarized to evaluate the presented progresses in the past several years and to outline the perspective for the further developments. Moreover, a special emphasis is given on the analytical models and computer simulation method of the researches of self-healing in cementitious materials.
Downloads
References
1. Lauer, K.R.; Slate, F.O. (1956) Autogenous healing of cement paset. J. Am. Concr. Inst. 52 [6], 1083–1098.
2. Nijland, T.G.; Larbi, J.A.; van Hees, R.P.J.; Lubelli. B.; de Rooij, M.R. (2007) Self-healing phenomena in concretes and masonry mortars: a microscopic study, en: van der Zwaag S (ed.): Proceedings of First International Conference on Self Healing Materials. Noordwijk aan Zee, The Netherlands, 18–20.
3. van Breugel, K. (2007) Is there a market for self-healing cement-based materials?, en: Schmets A J M, van der Zwaag S (eds.): Proceedings of the First International Conference on Self Healing Materials. Noordwijk aan Zee, The Netherlands, 18–20.
4. Li, V.C.; Yang, E.H. (2007) Self healing in concrete materials, en: van der Zwaag S (ed.): Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, 161–193. Springer, Dordrecht.
5. Caplan, A.I. Bone development, en: Caplan A I, Pechak D G (1988) (eds.): Cell and Molecular Biology of Vertebrate Hard Tissues: Ciba Foundation Symposium, 3–21, Wiley, Chichester.
6. Gray, R.J. (1984) Autogeneous healing of fiber/matrix interfacial bond in fiber-reinforced mortar. Cem. Concr. Res. 14 [3], 315–317. http://dx.doi.org/10.1016/0008-8846(84)90047-4
7. Hannant, D.J.; Keer, J.G. (1983) Autogeneous healing of thin cement based sheets. Cem. Concr. Res.; vol. 13 [3], 357–365. http://dx.doi.org/10.1016/0008-8846(83)90035-2
8. Hearn, N. (1998) Self-healing, autogenous healing and continued hydration: What is the difference? Mater. Struct. 31 [8], 563–567. http://dx.doi.org/10.1007/BF02481539
9. Edvardsen, C. (1999) Water permeability and autogenous healing of cracks in concrete. ACI Mater. J. 96 [4], 448–454.
10. Li, V.C.; Lim, Y.M.; Chan, Y.W. (1998) Feasibility study of a passive smart self-healing cementitious composite, Compos. Part. B: Eng. 29 [6], 819–827. http://dx.doi.org/10.1016/S1359-8368(98)00034-1
11. Dry, C. (1994) Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibres into cement matrices. Smart Mater. Struct. 3 [2], 118–123. http://dx.doi.org/10.1088/0964-1726/3/2/006
12. van Tittelboom, K.; de Belie, N.; van Loo, D.; Jacobs, P. (2011) Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cem. Concr. Compos. 33 [4], 497–505. http://dx.doi.org/10.1016/j.cemconcomp.2011.01.004
13. Yang, Z.X.; Hollar, J.; He, X.D.; Shi, X.M. (2011) A self-healing cementitious composite using oil/silica gel shell microcapsules. Cem. Concr. Compos. 33 [4], 506–512. http://dx.doi.org/10.1016/j.cemconcomp.2011.01.010
14. Dry, C.; McMillan, W. (2000) Three design for the internal release of sealants, adhesives and waterproofing chemical into concrete to release. Cem. Concr. Res. 30 [12], 1969–1977. http://dx.doi.org/10.1016/S0008-8846(00)00415-4
15. Dry, C.; McMillan, W. (1996) Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Mater. Struct. 5 [3], 297–300. http://dx.doi.org/10.1088/0964-1726/5/3/007
16. Yang, Y.Z.; Yang, E.H.; Li, V.C. (2011) Autogenous healing of engineered cementitious composites at early age. Cem. Concr. Res. 41 [2], 176–183. http://dx.doi.org/10.1016/j.cemconres.2010.11.002
17. Hager, M.D.; Greil, P.; Leyens, C.; van der Zwaag, S.; Schubert, U.S. (2010) Self-healing materials. Adv. Mater. 22 [47], 5424–5430. http://dx.doi.org/10.1002/adma.201003036
18. van der Zwaag, S.; van Dijk, N.H.; Jonkers, H.M.; Mookhoek, S.D.; Sloof, W.G. (2009), Self-healing behavior in man-made engineering materials: bioinspired but taking into account their intrinsic character. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 367, 1689–1704. http://dx.doi.org/10.1098/rsta.2009.0020
19. van der Zwaag, S. (2010) Routes and mechanisms towards self healing behaviour in engineering materials. Bull. Pol. Acad. Sci. Tech. Sci. 58 [2], 227–236.
20. Ghosh, S.K. (2009) Self-Healing Materials: Fundamentals, Design Strategies, and Applications, Wiley-VCH, Weinheim, Germany.
21. van der Zwaag, S. (2007) Self-Healing Materials: An Alternative Approach to 20 Centuries of Material Science, Springer, Dordrecht, Netherlands. http://dx.doi.org/10.1007/978-1-4020-6250-6
22. Joseph, C.; Gardner, D.; Jefferson, T.; Isaacs, B.; Lark, B. (2011) Self-healing cementitious materials: A review of recent work. Construct. Mater. 164 [1], 29–41. http://dx.doi.org/10.1680/coma.900051
23. Hearn, N.; Morley, C.T. (1997) Self-healing property of concrete–Experimental evidence. Mater. Struct. 30 [7], 404–411. http://dx.doi.org/10.1007/BF02498563
24. Hyde, G.W.; Smith, W.J. (1889) Results of experiments made to determine the permeability of cements and cement mortars. J. Franklin. I. 128 [3], 199–207. http://dx.doi.org/10.1016/0016-0032(89)90217-2
25. Reinhardt, H.W.; Jooss, M. (2003) Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem. Concr. Res. 33 [7], 981–985. http://dx.doi.org/10.1016/S0008-8846(02)01099-2
26. Farage, M.C.R.; Sercombe, J.; Galle, C. (2003) Rehydration and microstructure of cement paste after heating at temperatures up to 300 °C. Cem. Concr. Res. 33 [7], 1047–1056. http://dx.doi.org/10.1016/S0008-8846(03)00005-X
27. Cowie, J.; Glasser, F.P. (1992) The reaction between cement and natural waters containing dissolved carbon dioxide. Adv. Cem. Res. 4 [15], 119–134. http://dx.doi.org/10.1680/adcr.1992.4.15.119
28. ter Heide, N. (2005) Crack Healing in Hydrating Concrete, Msc. Thesis, Delft University of Technology, Delft.
29. Ismail, M.; Toumi, A.; Francois, R.; Gagne, R. (2004) Effect of crack opening on local diffusion of chloride inert materials. Cem. Concr. Res. 34 [4], 711–716. http://dx.doi.org/10.1016/j.cemconres.2003.10.025
30. Aldea, C.; Song, W.; Popovics, J.S.; Shah, S.P. (2000) Extent of healing of cracked normal strength concrete. J. Mater. Civil Eng. 12 [1], 92–96. http://dx.doi.org/10.1061/(ASCE)0899-1561(2000)12:1(92)
31. Kishi, T.; Ahn, T.H.; Hosoda, A.; Suzuki, S.; Takaoka, H. (2007) Self-healing behaviour by cementitious recrystallization of cracked concrete incorporating expansive agent, en: van der Zwaag S (ed.): Proceedings of First International Conference on Self-Healing Materials. Noordwijk aan Zee, The Netherlands, 18–20.
32. Clear, C.A. (1985) The effects of autogenous healing upon the leakage of water through cracks in concrete. Cement and Concrete Association Technical Reports, 559.
33. Hearn, N. (1999) Effect of shrinkage and load-induced cracking on water permeability of concrete. ACI Mater. J. 96 [2], 234–241. http://dx.doi.org/10.14359/450
34. Otsuki, N.; Miyazato, S.; Diola, N.B.; Suzuki, H. (2000) Influences of bending crack and water-cement ratio on chloride-induced corrosion of main reinforcing bars and stirrups. ACI Mater. J. 97 [4], 454–464.
35. Qian, S.; Zhou, J.; de Rooij, M.R.; Schlangen, E.; Ye, G.; van Breugel, K. (2009) Self-healing behavior of strain hardening cementitious composites incorporating local waste materials. Cem. Concr. Compos. 31 [9], 613–621. http://dx.doi.org/10.1016/j.cemconcomp.2009.03.003
36. Zhong, W.; Yao, W. (2008) Influence of damage degree on self-healing of concrete. Constr. Build. Mater. 22 [6], 1137–1142. http://dx.doi.org/10.1016/j.conbuildmat.2007.02.006
37. Fidjestol, P.; Nilsen, N. (1980) Field test of reinforcement corrosion in concrete, ACI Special Publication, 65, 205–222.
38. Bakker, R.F.M. Initiation period, Schiessl P, ed. Corrosion of Steel in Concrete. New York, (1988).
39. Sahmaran, M.; Li, M.; Li, V.C. (2007) Transport properties of Engineered Cementitious Composites under chloride exposure. ACI Mater. J. 104 [6], 604–611.
40. Li, M.; Li, V.C. Cracking and healing of engineered cementitious composites under chloride environment. ACI Mater. J; vol. 108 [3], 333–340.
41. Ismail, M.; Toumi, A.; Francois, R.; Gagne, R. (2008) Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem. Concr. Res. 38 [8/9], 1106–1111. http://dx.doi.org/10.1016/j.cemconres.2008.03.009
42. Henry, M.; Suzuki, M.; Kato, Y. (2011) Behavior of fire-damaged mortar under variable re-curing conditions. ACI Mater. J. 108 [3], 281–289.
43. Crook, D.N.; Murray, M.J. (1970) Regain of strength and firing of concrete. Mag. Concrete Res. 22 [72], 149–154. http://dx.doi.org/10.1680/macr.1970.22.72.149
44. Sarshar, R.; Khoury, G.A. (1993) Material and environmental factors influencing the compressive strength of unsealed cement paste and concrete at high temperatures. Mag. Concrete Res. 45 [162], 51–61. http://dx.doi.org/10.1680/macr.1993.45.162.51
45. Lin, W.M.; Lin, T.D.; Powers-Couche, L.J. (1996) Microstructures of fire-damaged concrete. ACI Mater. J. 93 [3], 199–205.
46. Poon, C.S.; Azhar, S.; Anson, M.; Wong, Y.K. (2001) Strength and durability recovery of fire-damaged concrete after post-fire-curing. Cem. Concr. Res. 31 [9], 1307–1318. http://dx.doi.org/10.1016/S0008-8846(01)00582-8
47. ter Heide, N.; Schlangen, E.; van Breugel, K. (2005) Experimental study of crack healing of early age cracks, en: Jensen O M, Geiker, M.; Stang, H. (ed.): Proceedings of Knud Højgaard Conference on Advanced Cement-Based Materials. Lyngby, Knud Hojgaard.
48. ter Heide, N.; Schlangen, E.; van Breugel, K. (2005) Experimental study of crack healing of early age cracks, en: Jensen O M, Geiker M, Stang H (eds.): Knud Hojgaard Conference on Advanced Cement-based Materials: Research and Teaching. Lyngby, Denmark, Knud Hojgaard.
49. Granger, S.; Pijaudier-Cabot, G.; Loukili, A. (2007) Mechanical behavior of self-healed ultra high performance concrete: from experimental evidence to modeling, en: Carpinteri A, Gambarova P G, Ferro G, Plizzari G (eds.): the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Catalina, Italy, Taylor & Francis, London.
50. Sahmaran, M.; Keskin, S.B.; Ozerkan, G.; Yaman, I.O. (2008) Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash. Cem. Concr. Compos. 30 [10], 872–879. http://dx.doi.org/10.1016/j.cemconcomp.2008.07.001
51. Granger, S.; Loukili, A.; Pijaudier-Cabot, G.; Chanvillard, G. (2007) Experimental characterization of the self-healing of cracks in an ultra high performance cementitious materials: Mechanical tests adn acoustic emission analysis. Cem. Concr. Res. 37 [4], 519–527. http://dx.doi.org/10.1016/j.cemconres.2006.12.005
52. Jefferson, A.D.; Joseph, C.; Lark, R.J.; Isaacs, B.; Dunn, S.; Weager, B. (2010) A new system for crack closure and low-level post-tensioning of cementitious materials using shrinkable polymers. Cem. Concr. Res. 40 [5], 795–801. http://dx.doi.org/10.1016/j.cemconres.2010.01.004
53. Joseph, C. (2008) Experimental and Numerical Study of the Fracture and Self-Healing of Cementitious Materials, Ph. D Thesis, Cardiff University, Cardiff.
54. Joseph, C.; Jefferson, A.D.; Isaacs, B.; Lark, R.J. (2010) Experimental investigation of adhesive-based self-healing of cementitious materials. Mag. Concrete Res. 62 [11], 831–843. http://dx.doi.org/10.1680/macr.2010.62.11.831
55. Van Tittelboom, K.; Snoeck, D.; Vontobel, P.; Wittmann, F.H.; De Belie, N. (2013) Use of neutron radiography and tomograhpy to visualize the autonomous crack sealing efficiency in cementitious materials. Mater. Struct. 46 [1/2], 105–121. http://dx.doi.org/10.1617/s11527-012-9887-1
56. Van Tittelboom, K.; De Belie, N. (2013) Self-healing in cementitious materials - a review. Materials, 6 [6], 2182–2217. http://dx.doi.org/10.3390/ma6062182
57. van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; de Belie, N. (2011) Methyl methacrylate as a healing agent for self-healing cementitious materials. Smart Mater. Struct. 20 [12], 125016. http://dx.doi.org/10.1088/0964-1726/20/12/125016
58. Hosoda, A.; Kishi, T.; Arita, H.; Takakuwa, Y. (2007) Self-healing of crack and water permeability of expansive concrete, en: van der Zwaag S (ed.): Proceedings of First International Conference on Self-Healing Materials. Noordwijk aan Zee, The Netherlands, 18–20.
59. Yamada, K.; Hosoda, A.; Kishi, T.; Nozawa, S. (2007) Crack self-healing properties of expansive concretes with various cements and admixtures, en: van der Zwaag S (ed.): Proceedings of First International Conference on Self-Healing Materials. Noordwijk aan Zee, The Netherlands, 18–20.
60. Ahn, T.H.; Kishi, T. (2010) Crack self-healing behavior of cementitious composites incorporating various mineral admixtures. J. Adv. Concr. Technol. 8 [2], 171–186. http://dx.doi.org/10.3151/jact.8.171
61. Termkhajornkit, P.; Nawa, T.; Yamashiro, Y.; Saito, T. (2009) Self-healing ability of fly ash-cement systems. Cem. Concr. Compos. 31 [3], 195–203. http://dx.doi.org/10.1016/j.cemconcomp.2008.12.009
62. Homma, D.; Mihashi, H.; Nishiwaki, T.; Mizukami, T. (2008) Experimental study on the self-healing capability of fibre reinforced cementitious composites, en: Tanabe T (ed.): Proceedings of the 8th International Conference on Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures. Ise-Shima, Japan, 30 Sep.–2 Oct. 2008, 769–774, CRC Press, Taylor & Francis Group, London.
63. Homma, D.; Mihashi, H.; Nishiwaki, T. (2008) Experimental study of the self-healing capability of fiber reinforced cementitious composites, en: Gettu R (ed.): Proceedings of the 7th RILEM International Symposium, Fibre Reinforced Concrete: Design and Applications. Chennai (Madras), India, September, 1029–1038, RILEM Publications, S.A.L.
64. Homma, D.; Mihashi, H.; Nishiwaki, T. (2009) Self-healing capability of fibre reinforced cementitious composites. J. Adv. Concr. Technol. 7 [2], 217–228. http://dx.doi.org/10.3151/jact.7.217
65. Yang, Y.; Lepech, M.; Li, V.C. (2005) Self-healing of ECC under cyclic wetting and drying, en: International Workshop on Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads (CMCL). Qingdao, China, October, 231–242.
66. Sahmaran, M.; Li, V.C. (2007) De-icing salt scaling resistance of mechanically loaded Engineered Cementitious Composites. Cem. Concr. Res. 37 [7], 1035–1046. http://dx.doi.org/10.1016/j.cemconres.2007.04.001
67. Sahmaran, M.; Li, V.C. (2008) Durability of mechanically loaded Engineered Cementitious Composites under high alkaline environment. Cem. Concr. Compos. 30 [2], 72–81. http://dx.doi.org/10.1016/j.cemconcomp.2007.09.004
68. Sahmaran, M.; Li, V.C. (2009) Durability properties of micro-cracked ECC containing high volumes fly ash. Cem. Concr. Res. 39 [11], 1033–1043. http://dx.doi.org/10.1016/j.cemconres.2009.07.009
69. Yang, Y.; Lepech, M.; Yang, E.; Li, V.C. (2009) Autogenous healing of engineering cementitious composites under wet–dry cycles. Cem. Concr. Res. 39 [5], 382–390. http://dx.doi.org/10.1016/j.cemconres.2009.01.013
70. Qian, S.Z.; Zhou, J.; Schlange, E. (2010) Influence of curing condition and precracking time on the self-healing behavior of Engineered Cementitious Composites. Cem. Concr. Compos. 32 [9], 686–693. http://dx.doi.org/10.1016/j.cemconcomp.2010.07.015
71. Kan, L.L.; Shi, H.S.; Sakulich, A.R.; Li, V.C. (2010) Self-healing characterization of engineered cementitious composites (ECC). ACI Mater. J. 107 [6], 617–624.
72. Yu, J.H.; Chen, W.; Yu, M.X.; Yang, E.H. (2010) The microstructure of self-healed PVA ECC under wet and dry cycles. Mater. Res. 13 [2], 225–231. http://dx.doi.org/10.1590/S1516-14392010000200017
73. White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R. (2001) Autonomic healing of polymer composites. Nature, 409 [6822], 794–797. http://dx.doi.org/10.1038/35057232
74. Kessler, M.R.; White, S.R. (2001) Self-activated healing of delamination damage in woven composites. Compos. Pt. A: Appl. Sci. Manuf. 32 [5], 683–699. http://dx.doi.org/10.1016/S1359-835X(00)00149-4
75. Brown, E.N.; White, S.R.; Sottos, N.R. (2005) Retardation and repair of fatigue cracks in a capsule toughened epoxy composite. Part I: Manual infiltration. Compos. Sci. Technol. 65 [15/16], 2466–2473. http://dx.doi.org/10.1016/j.compscitech.2005.04.020
76. Brown, E.N.; White, S.R.; Sottos, N.R. (2005) Retardation and repair of fatigue cracks in a capsule toughened epoxy composite. Part II: In-situ self-healing. Compos. Sci. Technol. 65 [15/16], 2474–2480. http://dx.doi.org/10.1016/j.compscitech.2005.04.053
77. Herbst, O.; Luding, S. (2008) Modelling particulate self-healing materials and application to uni-axial compression. Int. J. Fract. 154 [1/2], 87–103. http://dx.doi.org/10.1007/s10704-008-9299-y
78. He, H.; Guo, Z.Q.; Stroeven, P.; Hu, J.; Stroeven, M. (2007) Computer simulation study of concrete's self-healing capacity due to unhydrated cement nuclei in interfacial transition zones, en: Schmets A J M, van der Zwaag S (eds.): the First International Conference on Self-Healing Materials. Noordwijk aan Zee, The Netherlands, 18–20.
79. He, H.; Guo, Z.Q.; Stroeven, P.; Stroeven, M.; Sluys, L.J. (2007) Self-healing capacity of concrete - computer simulation study of unhydrated cement structure. Image Anal. Stereol. 26, 137–143. http://dx.doi.org/10.5566/ias.v26.p137-143
80. Zemskov, S.V.; Jonkers, H.M.; Vermolen, F.J. (2011) Two analytical models for the probability characteristics of a crack hitting encapsulated particles: application to self-healing materials. Comp. Mater. Sci. 50 [12], 3323–3333.
81. Zemskov, S.V.; Jonkers, H.M.; Vermolen, F.J. (2010) An analytical model for the probability characteristics of a crack hitting an encapsulated self-healing agent in concrete, en: Gerdt V P (ed.): Computer Algebra in Scientific Computing - Lecture Notes in Computer Science, 280–292, Springer-Verlag, Berlin.
82. Lv, Z.; Chen, H.S. (2013) Self-healing efficiency of unhydrated cement nuclei for dome-like crack mode in cementitious materials. Mater. Struct. 46 [11], 1881–1892. http://dx.doi.org/10.1617/s11527-013-0027-3
83. Lv, Z.; Chen, H.S. (2011) Modeling self-healing efficiency on cracks due to unhydrated cement nuclei in cementitious materials: splitting crack mode. Sci. Eng. Compos. Mater. 19 [1], 1–7. http://dx.doi.org/10.1515/secm.2011.0062
84. Lv, Z.; Chen, H.S. (2012) Modeling of self-healing efficiency for cracks due to unhydrated cement nuclei in hardened cement paste. Procedia Engineering, 27, 281–290. http://dx.doi.org/10.1016/j.proeng.2011.12.454
85. van Breugel, K. (1997) Simulation of Hydration and Formation of Structure in Hardening Cement-Based Materials, Ph.D Thesis, Delft University of Technology, Delft.
86. Stroeven, M. (1999) Discrete Numerical Modelling of Composite Materials, Ph.D Thesis, Delft University of Technology, Delft.
87. Baroghel-Bouny, V.; Mounanga, P. (2005) Effects of self-desiccation of autogenous deformations, microstructure and long-term hygral behavior, en: Persson B, Bentz D, Nillson L O (eds.): the Fourth International Research Seminar on Self-Desiccation and its Importance in Concrete Technology. Gaitherburg, Maryland, USA, June, 2005, 21–48.
88. Baldie, K.D.; Pratt, P.L. (1986) Crack growth in hardened cement paste, en: Mindess S, Shah S P (eds.): Cement-Based Composites: Strain Rate Effects on Fracture (MRS Proceedings), 47–61, Cambridge University Press, Cambridge.
89. Lv, Z.; Chen, H.S.; Yuan, H.F. (2011) Quantitative solution on dosage of repair agent for healing of cracks in materials: short capsule model vs. two-dimensional crack pattern. Sci. Eng. Compos. Mater. 18 [1/2], 13–19.
90. Lv, Z.; Chen, H.S.; Yuan, H.F. (2011) Quantitative solution on dosage of repair-agent for healing of 3D simplified cracks in materials: short capsule model. Mater. Struct. 44 [5], 987–995. http://dx.doi.org/10.1617/s11527-010-9681-x
91. Lv, Z.; Chen, H.S.; Yuan, H.F. (2010) Analytical solution on dosage of long capsules for the self-healing of cracks in cementitious composites: 2D model, en: Sui T B, Zhang W S (eds.): 7th International Conference on Cement and Concrete. Jinan, China, May 9-12, 2010, 1409–1417, Foreign Language Press, Beijing.
92. Lv, Z.; Chen, H.S.; Yuan, H.F. (2012) Analytical solution on dosage of self-healing agents in cementitious materials: long capsule model. J. Intell. Mater. Syst. Struct. 25 [1], 47–57. http://dx.doi.org/10.1177/1045389X12457250
93. Lv, Z.; Chen, H.S. (2013) Analytical models for determining the dosage of capsules embedded in self-healing materials. Comp. Mater. Sci. 68, 81–89. http://dx.doi.org/10.1016/j.commatsci.2012.09.032
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.