The use of recycled aggregates in the construction sector: a scientific bibliometric analysis

Authors

DOI:

https://doi.org/10.3989/mc.2022.07421

Keywords:

Waste treatment, Recycled aggregate, Construction sector, Bibliometric analysis, Science mapping analysis, Concrete

Abstract


The environmental problems associated with the construction sector have promoted the worldwide scientific community to pay attention to the use of recycled aggregates from construction and demolition waste. SciMAT and VOSviewer bibliometric tools have been applied in order to analyse, quantify and visualise the conceptual and social aspects of this scientific field, as well as its evolution between 1973 and 2019. The study of 843 scientific papers in this field has shown that the most important thematic area has been Recycling. In general, the common objective of the published papers was to study the efficient use of resources contained in construction and demolition waste due to their treatment to produce recycled aggregates, particularly for use in concrete. Likewise, some lacks have been observed in other areas of the analysed field, e.g. the use recycled aggregates in applications subject to less demanding regulations (mortars, precast concrete products, or green roofs).

Downloads

Download data is not yet available.

References

UEPG. (2018) European aggregates association. A sustainable industry for a sustainable Europe. Annual Review 2017-2018. Union Eur des Prod Granulats Brussels-Belgium. 32.

Eurostat. (2018) Waste Statistics, gestión de residuos (env_wasgen) [Internet]. Eurostat. 2018. p. Date accesed: 20-11-2018. Retrieved from https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wasgen&lang=en.

Comisión Europea. (2014) COM 445. Comunicación de la comisión al parlamento europeo, el consejo, el comité económico y social europeo y el comité de las regiones. Oportunidades para un uso más eficiente de los recursos en el sector de la construcción. Bruselas. 1-29.

Comisión Europea. (2015) COM 614. Comunicación de la comisión al parlamento europeo, el consejo, el comité económico y social europeo y el comité de las regiones. Cerrar el círculo: Un plan de acción de la UE para la economía circular (COM 614). Bruselas. 24.

Ministerio de Fomento. (2008) EHE-08. Instrucción de Hormigón Estructual. BOE. 203, 35176-8.

Comisión Europea. (2014) COM 397. Propuesta de directiva del parlamento europeo y del consejo por la que se modifican las directivas 2008/98/CE sobre los residuos, 94/62/CE relativa a los envases y residuos de envases, 1999/31/CE relativa al vertido de residuos, 2000/53/CE relati. Bruselas. 35.

Parlamento Europeo. (2015) 2017/C 265/08. Resolución del Parlamento Europeo, de 9 de julio de 2015, sobre el uso eficiente de los recursos: avanzar hacia una economía circular (2014/2208(INI)). DOUE. C 295, 65-75.

Comisión Europea. (2017) COM 33. Informe de la comisión al parlamento europeo, al consejo, al comité económico y social europeo y al comité de las regiones sobre la aplicación del plan de acción para la economía circular. Bruselas. 1-15.

Chen, P.; Chen, X.; Wang, Y.; Wang, P. (2020) Preliminary study on the upcycle of non-structural construction and demolition waste for waste cleaning. Mater. Construcc. 70 [338], e220.. https://doi.org/10.3989/mc.2020.13819

Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. (2014) Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

Saini, P.; Ashish, K.D. (2015) A review on recycled concrete aggregates. SSRG Int J Civ Eng - EFES. 71-75.

Kazmi, S.M.S.; Munir, M.J.; Wu, Y-F.; Patnaikuni, I.; Zhou, Y.; Xing, F. (2019) Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: A comparative study. Cem. Concr. Compos. 104, 103398. https://doi.org/10.1016/j.cemconcomp.2019.103398

González-Fonteboa, B.; Seara-Paz, S.; de Brito, J.; González-Taboada, I.; Martínez-Abella, F.; Vasco Silva, R. (2018) Recycled concrete with coarse recycled aggregate. An overview and analysis. Mater. Construcc. 68 [330], e151. https://doi.org/10.3989/mc.2018.13317

Rubio De Hita, P.; Pérez-Gálvez, F.; Morales-Conde, M.J.; Pedreño-Rojas, M.A. (2019) Characterisation of recycled ceramic mortars for use in prefabricated beam-filling pieces in structural floors. Mater. Construcc. 69 [334], e189. https://doi.org/10.3989/mc.2019.04518

Sánchez-Roldán, Z.; Martín-Morales, M.; Valverde-Espinosa, I.; Zamorano, M. (2020) Technical feasibility of using recycled aggregates to produce eco-friendly urban furniture. Constr. Build. Mater. 250, 118890. https://doi.org/10.1016/j.conbuildmat.2020.118890

Naganathan, S.; Silvadanan, S.; Chung, T.Y.; Nicolasselvam, M.F.; Thiruchelvam, S. (2014) Use of wastes in developing mortar - a review. in: green technologies and sustainable development in construction. trans tech publications. Adv. Mat. Res. 9352014, 146-150. https://doi.org/10.4028/www.scientific.net/AMR.935.146

Cuenca-Moyano, G.M.; Martín-Morales, M.; Valverde-Palacios, I.; Valverde-Espinosa, I.; Zamorano, M. (2014) Influence of pre-soaked recycled fine aggregate on the properties of masonry mortar. Constr. Build. Mater. 70, 71-79. https://doi.org/10.1016/j.conbuildmat.2014.07.098

Ferreira, R.L.S.; Anjos, M.A.S.; Ledesma, E.F.; Pereira, J.E.S.; Nóbrega, A.K.C. (2020) Evaluation of the physical-mechanical properties of cement-lime based masonry mortars produced with mixed recycled aggregates. Mater. Construcc. 70 [337], e210. https://doi.org/10.3989/mc.2020.02819

Vieira, C.S.; Pereira, P.M. (2015) Use of recycled construction and demolition materials in geotechnical applications: A review. Resour. Conserv. Recycl. 103, 192-204. https://doi.org/10.1016/j.resconrec.2015.07.023

Cardoso, R.; Silva, R.V.; Brito, J. de; Dhir, R.K. (2016) Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Manag. 49, 131-145. https://doi.org/10.1016/j.wasman.2015.12.021 PMid:26748436

Marín-Uribe, C.R.; Navarro-Gaete, R. (2021) Empirical relationships between compressive and flexural strength of concrete containing recycled asphalt material for pavement applications using different specimen configurations. Mater. Construcc. 71 [342], e249. https://doi.org/10.3989/mc.2021.11520

Chen, H.; Yang, Y.; Yang, Y.; Jiang, W.; Zhou, J. (2014) A bibliometric investigation of life cycle assessment research in the web of science databases. Int. J. Life Cycle Assess. 19 [10], 1674-1685. https://doi.org/10.1007/s11367-014-0777-3

Rodríguez-Bolívar, M.P.; Alcaide-Muñoz, L.; Cobo, M.J. (2018) Analyzing the scientific evolution and impact of e-Participation research in JCR journals using science mapping. Int. J. Inf. Manage. 40, 111-119. https://doi.org/10.1016/j.ijinfomgt.2017.12.011

Callon, M.; Courtial, J.-P.; Laville, F. (1991) Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics. 22, 155-205. Retrieved from https://www.academia.edu/28341042/Co_word_analysis_as_a_tool_for_describing_the_network_of_interactions_between_basic_and_technological_research_The_case_of_polymer_chemsitry. https://doi.org/10.1007/BF02019280

Noyons, E.C.M.; Moed, H.F.; Luwel, M. (1999) Combining mapping and citation analysis for evaluative bibliometric purposes: A bibliometric study. J. Am. Soc. Inf. Sci. 50 [2], 115-131. https://doi.org/10.1002/(SICI)1097-4571(1999)50:2<115::AID-ASI3>3.0.CO;2-J

Morris, S.A.; Van der Veer Martens, B. (2009) Mapping research specialties. Annu Rev Inf Sci Technol. 42 [1], 213-295. https://doi.org/10.1002/aris.2008.1440420113

Cobo Martín, M.J.; Martínez, M.A.; Gutiérrez-Salcedo, M.; Fujita, H.; Herrera-Viedma, E. (2015) 25 years at knowledge-based systems: a bibliometric analysis. Knowledge-Based Syst. 80, 3-13. https://doi.org/10.1016/j.knosys.2014.12.035

Cobo Martín, M.J.; López-Herrera, E.; Herrera-Viedma, E.; Herrara, F. (2011) Science mapping software tools: review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 62 [7], 1382-1402. https://doi.org/10.1002/asi.21525

Cobo Martín, M.J.; Lõpez-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. (2012) SciMAT: A new science mapping analysis software tool. J. Am. Soc. Inf. Sci. Technol. 63 [8], 1609-1630. https://doi.org/10.1002/asi.22688

Persson, O.; Danell, R.; Schneider, J. (2009) How to use Bibexcel for various types of bibliometric analysis. Celebr. Sch. Commun. Stud. A Festschrift Olle Persson His 60th Birthd. 5, 9-24.

Chen, C. (2006) CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 57 [3], 359-377. https://doi.org/10.1002/asi.20317

Wise, J.A. (1999) The Ecological Approach to Visualization. J. Am. Soc. Inf. Sci. 50, 1224-1233. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.8319&rep=rep1&type=pdf. https://doi.org/10.1002/(SICI)1097-4571(1999)50:13<1224::AID-ASI8>3.0.CO;2-4

Sci2 Team. (2009) Sci2 A tool for science of science research & practice. Retrieved from http://sci2.cns.iu.edu.

Cobo-Martín, M.J. (2011) SciMAT: Herramienta software para el análisis de la evolución del conocimiento científico. propuesta de una metodología de evaluación. Universidad de Granada. 2011. Retrieved from http://hdl.handle.net/10481/20201.

van Eck, N.J.; Waltman, L. (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 84 [2], 523-538. https://doi.org/10.1007/s11192-009-0146-3 PMid:20585380 PMCid:PMC2883932

Martí-Vargas, J.R.; García-Taengua, E.; Hale, W.M.; ElBatanouny, M.K.; Ziehl, P.H. (2015) Bibliometric analysis of Web of Science-indexed papers on concrete segmental bridges. PCI J. 60 [1], 118-133. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84938089242&partnerID=40&md5=28e8d93003a2238ab212d9806a2e24ea.

Mymoon, M.; Mahendran, S.; Lakshmi-Poorna, R.; Suryakala, S. (2016) Directions in self consolidating concrete research : A bibliometric study. J Struct Eng. 43 [4], 329-340. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016088593&partnerID=40&md5=e631247174590589df97657ce1839ed5.

Liang, H.; Zhang, S.; Su, Y. (2020) The structure and emerging trends of construction safety management research: a bibliometric review. Int. J. Occup. Saf. Ergon. 26 [3], 1-20. https://doi.org/10.1080/10803548.2018.1444565 PMid:29480063

Geng, S.; Wang, Y.; Zuo, J.; Zhou, Z.; Du, H.; Mao, G. (2017) Building life cycle assessment research: A review by bibliometric analysis. Renew. Sustain. Energy Rev. 76, 176-184. https://doi.org/10.1016/j.rser.2017.03.068

Nwodo, M.N.; Anumba, C.J. (2019) A review of life cycle assessment of buildings using a systematic approach. Build. Environ. 162, 106290. https://doi.org/10.1016/j.buildenv.2019.106290

Rojas-Sola, J.I.; de San-Antonio-Gómez, C. (2010) Análisis bibliométrico de las publicaciones científicas españolas en la categoría construction & building technology de la base de datos web of science (1997-2008). Mater. Construcc. 60 [300], 143-149. https://doi.org/10.3989/mc.2010.59810

Cañas-Guerrero, I.; Mazarrón, F.R.; Calleja-Perucho, C.; Pou-Merina, A. (2014) Bibliometric analysis in the international context of the "Construction & Building Technology" category from the Web of Science database. Constr. Build. Mater. 53, 13-25. https://doi.org/10.1016/j.conbuildmat.2013.10.098

Sorli-Rojo, A.; Mochón-Bezares, G. (2013) 'Materiales de Construcción' Journal, 2003-2012: a bibliometric analysis. Mater. Construcc. 63 [312], 613-621. https://doi.org/10.3989/mc.2013.07513

Blank, L.; Vasl, A.; Levy, S.; Grant, G.; Kadas, G.; Dafni, A.; et al. (2013) Directions in green roof research: A bibliometric study. Build Environ. 66, 23-28. https://doi.org/10.1016/j.buildenv.2013.04.017

Farzaneh, A.; Monfet, D.; Forgues, D. (2019) Review of using Building Information Modeling for building energy modeling during the design process. J. Build. Eng. 23, 127-135. https://doi.org/10.1016/j.jobe.2019.01.029

Matarneh, S.T.; Danso-Amoako, M.; Al-Bizri, S.; Gaterell, M.; Matarneh, R. (2019) Building information modeling for facilities management: A literature review and future research directions. J. Build. Eng. 24, 100755. https://doi.org/10.1016/j.jobe.2019.100755

Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. (2021) Circular economy in the building and construction sector: A scientific evolution analysis. J. Build. Eng. 44, 102705. https://doi.org/10.1016/j.jobe.2021.102704

Mhatre, P.; Panchal, R.; Singh, A.; Bibyan, S. (2021) A systematic literature review on the circular economy initiatives in the European Union. Sustain. Prod. Consum. 26, 187-202. https://doi.org/10.1016/j.spc.2020.09.008

Jin, R.; Yuan, H.; Chen, Q. (2019) Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resour. Conserv. Recycl. 140, 175-188. https://doi.org/10.1016/j.resconrec.2018.09.029

Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. (2019) Construction and demolition waste research: a bibliometric analysis. Archit. Sci. Rev. 62 [4], 354-365. https://doi.org/10.1080/00038628.2018.1564646

Liu, Y.; Sun, T.; Yang, L. (2017) Evaluating the performance and intellectual structure of construction and demolition waste research during 2000-2016. Environ. Sci. Pollut. Res. 24 [23], 19259-19266. https://doi.org/10.1007/s11356-017-9598-9 PMid:28667584

Ji, L.; Liu, C.; Huang, L.; Huang, G. (2018) The evolution of resources conservation and recycling over the past 30 years: a bibliometric overview. Resour. Conserv. Recycl. 134, 34-43. https://doi.org/10.1016/j.resconrec.2018.03.005

Wong, S.; Mah, A.X.Y.; Nordin, A.H.; Nyakuma, B.B.; Ngadi, N.; Mat, R.; et al. (2020) Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018. Environ. Sci. Pollut. Res. 27 [8], 7757-7784. https://doi.org/10.1007/s11356-020-07933-y PMid:32020458

Det Amornrut, U.; Hallinger, P. (2020) A bibliometric review of research on sustainable construction, 1994-2018. J. Clean. Prod. 254, 120073. https://doi.org/10.1016/j.jclepro.2020.120073

Gutiérrez-Salcedo, M.; Martínez, M.A.; Moral-Munoz, J.A.; Herrera-Viedma, E.; Cobo Martín, M.J. (2018) Some bibliometric procedures for analyzing and evaluating research fields. Appl. Intell. 48 [5], 1275-1287. https://doi.org/10.1007/s10489-017-1105-y

Castillo-Vergara, M.; Alvarez-Marin, A.; Placencio-Hidalgo, D. (2018) A bibliometric analysis of creativity in the field of business economics. J. Bus. Res. 85, 1-9. https://doi.org/10.1016/j.jbusres.2017.12.011

Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. (2018) Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 87, 235-247. https://doi.org/10.1016/j.autcon.2017.12.002

Kazmi, S.M.S.; Munir, M.J.; Wu, Y.F.; Patnaikuni, I.; Zhou, Y.; Xing, F. (2019) Axial stress-strain behavior of macro-synthetic fiber reinforced recycled aggregate concrete. Cem. Concr. Compos. 97, 341-356. https://doi.org/10.1016/j.cemconcomp.2019.01.005

Fernández-González, J.M.; Díaz-López, C.; Martín-Pascual, J.; Zamorano, M. (2020) Recycling organic fraction of municipal solid waste: Systematic literature review and bibliometric analysis of research trends. Sustain. 12 [11], 4798. https://doi.org/10.3390/su12114798

Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J. Clin. Epidemiol. 62 [10], e1-34. https://doi.org/10.1016/j.jclinepi.2009.06.006 PMid:19631507

Mongeon, P.; Paul-Hus, A. (2016) The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. 106 [1], 213-228. https://doi.org/10.1007/s11192-015-1765-5

Bordons, M.; Zulueta, M.A. (1999) Evaluación de la actividad científica a través de indicadores bibliométricos. Rev. Española Cardiol. 52 [10], 790-800. Retrieved from https://www.revespcardiol.org/es-evaluacion-actividad-cientifica-traves-indicadores-articulo-X0300893299001904. https://doi.org/10.1016/S0300-8932(99)75008-6

Torres-salinas, D. (2007) Diseño de un sistema de información y evaluación científica. Análisis ciencimétrico de la actividad investigadora de la Universidad de Navarra en el área de ciencias de la salud. 1999-2005. Tesis Doctoral. 396. Retrieved from http://eprints.rclis.org/10545/1/Tesis_Daniel_Torres.pdf.

Hirsch, J.E. (2005) An index to quantify an individual's scientific research output. Proc Natl. Acad. Sci. 102 [46], 16569-16572. https://doi.org/10.1073/pnas.0507655102 PMid:16275915 PMCid:PMC1283832

Martínez Sánchez, M.A.; Herrera Díaz, M.; Lima Fernández, A.I.; Herrera Gómez, M.; Herrera-Viedma, E. (2014) Un análisis bibliométrico de la producción académica española en la categoría de Trabajo Social del "Journal Citation Report". Cuader. Trab. Soc. 27 [2], 429-438. https://doi.org/10.5209/rev_CUTS.2014.v27.n2.44662

Eggue, L. (2006) Theory and practise of the g-index. Scientometrics. 69, [1] 131-152. Retireved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.9064&rep=rep1&type=pdf. https://doi.org/10.1007/s11192-006-0144-7

Alonso, S.; Cabrerizo, F.J.; Herrera-Viedma, E.; Herrera, F. (2010) hg-index: A new index to characterize the scientific output of researchers based on the h- and g-indices. Scientometrics. 82 [2], 391-400. https://doi.org/10.1007/s11192-009-0047-5

Cabrerizo, F.J.; Alonso, S.; Herrera-Viedma, E.; Herrera, F. (2010) q2-Index: Quantitative and qualitative evaluation based on the number and impact of papers in the Hirsch core. J. Informetr. 4 [1], 23-28. Retrieved from http://hdl.handle.net/10481/5679. https://doi.org/10.1016/j.joi.2009.06.005

Cobo Martín, M.J.; Herrera, F. (2013) SciMAT User guide. 1-17. Retrieved from http://sci2s.ugr.es/scimat.

Thomé, A.M.T.; Ceryno, P.S.; Scavarda, A.; Remmen, A. (2016) Sustainable infrastructure: A review and a research agenda. J. Environ. Manage. 184 [Pt 2], 143-156. https://doi.org/10.1016/j.jenvman.2016.09.080 PMid:27692891

Rip, A.; Courtial, J.P. (1984) Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics. 6 [6], 381-400. https://doi.org/10.1007/BF02025827

Buck, A.D. (1973) Recycle concrete. Highw Res Rec. [430], 1-8. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-0015560896&partnerID=40&md5=1dad6016cb43cf976ff6a5af3574da05.

Comisión Europea. (2016) Protocolo de gestión de residuos de construcción y demolición en la UE. Com Eur y ECORYS Ref Ares (2016) 6914779 - 12/12/2016. [septiembre] 61.

Oliveira Neto, R.; Gastineau, P.; Cazacliu, B.G.; Le Guen, L.; Paranhos, R.S.; Petter, C.O. (2017) An economic analysis of the processing technologies in CDW recycling platforms. Waste Manag. 60, 277-289. https://doi.org/10.1016/j.wasman.2016.08.011 PMid:27567131

Consejo de la Unión Europea. (2018) Directiva (UE) 2018/851 del Parlamento europeo y del Consejo de 30 de mayo de 2018 por la que se modifica la Directiva 2008/98/CE sobre los residuos. DOUE. L 150, [14 de junio] 109-140.

Parlamento Europeo; Consejo de la Unión Europea. (2018) Directiva

(UE) 2018/851 del Parlamento europeo y del Consejo de 30 de mayo de 2018 por la que se modifica la Directiva 2008/98/CE sobre los residuos. DOUE. L 150, [14 de junio] 109-140.

Evangelista, L.; De Brito, J. (2007) Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 29 [5], 397-401. https://doi.org/10.1016/j.cemconcomp.2006.12.004

Gomes, M.; de Brito, J. (2009) Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: Durability performance. Mater. Struct. 42 [5], 663-675. https://doi.org/10.1617/s11527-008-9411-9

Evangelista, L.; de Brito, J. (2010) Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 32 [1], 9-14. https://doi.org/10.1016/j.cemconcomp.2009.09.005

de Brito, J.; Pereira, A.S.; Correia, J.R. (2005) Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cem. Concr. Compos. 27 [4], 429-433. https://doi.org/10.1016/j.cemconcomp.2004.07.005

López-Uceda, A.; Ayuso, J.; Jiménez, J.R.; Agrela, F.; Barbudo, A.; De Brito, J. (2016) Upscaling the use of mixed recycled aggregates in non-structural low cement concrete. Materials. 9 [2], 91. https://doi.org/10.3390/ma9020091 PMid:28787892 PMCid:PMC5456509

Carro-López, D.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I.; de Brito, J.; Varela-Puga, F. (2017) Proportioning, microstructure and fresh properties of self-compacting concrete with recycled sand. Procedia Eng. 171, 645-657. https://doi.org/10.1016/j.proeng.2017.01.401

Esquinas, A.R.; Álvarez, J.I.; Jiménez, J.R.; Fernández, J.M.; de Brito, J. (2018) Durability of self-compacting concrete made with recovery filler from hot-mix asphalt plants. Constr. Build. Mater. 161, 407-419. https://doi.org/10.1016/j.conbuildmat.2017.11.142

Barroqueiro, T.; da Silva, P.R.; de Brito, J. (2019) Fresh-state and mechanical properties of high-performance self-compacting concrete with recycled aggregates from the precast industry. Materials. 12 [21], 3565. https://doi.org/10.3390/ma12213565 PMid:31671652 PMCid:PMC6873114

Pedro, D.; de Brito, J.; Evangelista, L. (2018) Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume. Cem. Concr. Compos. 93, 63-74. https://doi.org/10.1016/j.cemconcomp.2018.07.002

Silva, J.; de Brito, J.; Veiga, R. (2009) Incorporation of fine ceramics in mortars. Constr. Build. Mater. 23 [1], 556-564. https://doi.org/10.1016/j.conbuildmat.2007.10.014

Jiménez, J.R.; Ayuso, J.; López, M.; Fernández, J.M.; de Brito, J. (2013) Use of fine recycled aggregates from ceramic waste in masonry mortar manufacturing. Constr. Build. Mater. 40, 679-690. https://doi.org/10.1016/j.conbuildmat.2012.11.036

Silva, J.; de Brito, J.; Veiga, R. (2010) Recycled red-clay ceramic construction and demolition waste for mortars production. J. Mater. Civ. Eng. 22 [3], 236-244. https://doi.org/10.1061/(ASCE)0899-1561(2010)22:3(236)

Pereira, P.M.; Evangelista, L.; de Brito, J. (2012) The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates. Constr. Build. Mater. 28 [1], 722-729. https://doi.org/10.1016/j.conbuildmat.2011.10.050

Barbudo, M.A.; de Brito, J.; Evangelista, L.; Bravo, M.; Agrela, F. (2013) Influence of water-reducing admixtures on the mechanical performance of recycled concrete. J. Clean. Prod. 59, 93-98. https://doi.org/10.1016/j.jclepro.2013.06.022

Cartuxo, F.; de Brito, J.; Evangelista, L.; Jiménez, J.R.; Ledesma, E.F. (2015) Rheological behaviour of concrete made with fine recycled concrete aggregates - Influence of the superplasticizer. Constr. Build. Mater. 89, 36-47. https://doi.org/10.1016/j.conbuildmat.2015.03.119

Kurda, R.; de Brito, J.; Silvestre, J.D. (2017) Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cem. Concr. Compos. 84, 198-213. https://doi.org/10.1016/j.cemconcomp.2017.09.009

Kurda, R.; de Brito, J.; Silvestre, J.D. (2018) Indirect evaluation of the compressive strength of recycled aggregate concrete with high fly ash ratios. Mag. Concr. Res. 70 [4], 204-16. https://doi.org/10.1680/jmacr.17.00216

Kurda, R.; de Brito, J.; Silvestre, J.D. (2019) Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem. Concr. Compos. 95, 169-182. https://doi.org/10.1016/j.cemconcomp.2018.10.004

Evangelista, L.; de Brito, J. (2004) Criteria for the use of fine recycled concrete aggregates in concrete production. Int. RILEM Conf. Use Recycl. Mater. Build. Struct. [November] 503-510.

Evangelista, L.; Guedes, M.; de Brito, J.; Ferro, A.C.; Pereira, M.F. (2015) Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste. Constr. Build. Mater. 86, 178-188. https://doi.org/10.1016/j.conbuildmat.2015.03.112

Neno, C.; de Brito, J.; Veiga, R. (2014) Using fine recycled concrete aggregate for mortar production. Mater. Res. 17 [1], 168-77. https://doi.org/10.1590/S1516-14392013005000164

Li, W.; Xiao, J.; Shi, C.; Poon, C.S. (2015) Structural behaviour of composite members with recycled aggregate concrete - An overview. Adv. Struct. Eng. 18 [6], 919-938. https://doi.org/10.1260/1369-4332.18.6.919

Zhang, J.; Shi, C.; Li, Y.; Pan, X.; Poon, C-S.; Xie, Z. (2015) Influence of carbonated recycled concrete aggregate on properties of cement mortar. Constr. Build. Mater. 98 [Supplement C], 1-7. https://doi.org/10.1016/j.conbuildmat.2015.08.087

Kou, S-C.; Poon, C-S. (2009) Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. Cem. Concr. Compos. 31 [9], 622-627. https://doi.org/10.1016/j.cemconcomp.2009.06.005

González-Corominas, A.; Etxeberria, M.; Poon, C-S. (2017) Influence of the quality of recycled aggregates on the mechanical and durability properties of high performance concrete. Waste Biomass Valor. 8 [5], 1421-1432. https://doi.org/10.1007/s12649-016-9637-7

Lu, J.X.; Yan, X.; He, P.; Poon, C.S. (2019) Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. J. Clean. Prod. 234, 1102-12. https://doi.org/10.1016/j.jclepro.2019.06.260

Poon, C.S.; Kou, S.C.; Lam, L. (2002) Use of recycled aggregates in molded concrete bricks and blocks. Constr. Build. Mater. 16 [5], 281-9. https://doi.org/10.1016/S0950-0618(02)00019-3

Poon, C.S.; Chan, D. (2006) Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr. Build. Mater. 20 [8], 569-577. https://doi.org/10.1016/j.conbuildmat.2005.01.044

Poon, C-S.; Chan, D. (2007) Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates. Constr. Build. Mater. 21 [1], 164-75. https://doi.org/10.1016/j.conbuildmat.2005.06.031

Poon, C-S.; Lam, C.S. (2008) The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cem. Concr. Compos. 30 [4], 283-289. https://doi.org/10.1016/j.cemconcomp.2007.10.005

Poon, C-S.; Kou, S-C.; Wan, H. wen; Etxeberria, M. (2009) Properties of concrete blocks prepared with low grade recycled aggregates. Waste Manag. 29 [8], 2369-77. https://doi.org/10.1016/j.wasman.2009.02.018 PMid:19398196

Kou, S-C.; Poon, C-S.; Chan, D. (2004) Properties of steam cured recycled aggregate fly ash concrete. Int. RILEM Conf. use Recycl. Mater. Build. Struct. Barcelona. [1], 590-9.

Poon, C.S.; Shui, Z.; Lam, L.; Fok, H.; Kou, S.C. (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 34 [1], 31-6. https://doi.org/10.1016/S0008-8846(03)00186-8

Zhan, B.J.; Xuan, D.X.; Zeng, W.; Poon, C.S. (2019) Carbonation treatment of recycled concrete aggregate: Effect on transport properties and steel corrosion of recycled aggregate concrete. Cem. Concr. Compos. 104, 103360. https://doi.org/10.1016/j.cemconcomp.2019.103360

Hossain, U.; Poon, C-S.; Lo, I.M.C.; Cheng, J.C.P. (2016) Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resour. Conserv. Recycl. 109, 67-77. https://doi.org/10.1016/j.resconrec.2016.02.009

Fonseca, N.; de Brito, J.; Evangelista, L. (2011) The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cem. Concr. Compos. 33 [6], 637-643. https://doi.org/10.1016/j.cemconcomp.2011.04.002

Silva, R.V.; de Brito, J.; Dhir, R.K. (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117

Silva, R.V.; de Brito, J.; Dhir, R.K. (2016) Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. J. Clean. Prod. 112 [4], 2171-2186. https://doi.org/10.1016/j.jclepro.2015.10.064

Barroqueiro, T.; da Silva, P.R.; de Brito, J. (2019) Fresh-state and mechanical properties of high-performance self-compacting concrete with recycled aggregates from the precast industry. Materials. 12 [21], 3565. https://doi.org/10.3390/ma12213565 PMid:31671652 PMCid:PMC6873114

Fernández-Ledesma, E.; Jiménez, J.R.; Ayuso, J.; Fernández, J.M.; de Brito, J. (2015) Maximum feasible use of recycled sand from construction and demolition waste for eco-mortar production - Part-I: ceramic masonry waste. J. Clean. Prod. 87, 692-706. https://doi.org/10.1016/j.jclepro.2014.10.084

Poon, C-S.; Kou, S-C.; Lam, L. (2007) Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater. Struc. 40 [9], 981-988. https://doi.org/10.1617/s11527-006-9192-y

Xiao, Z.; Ling, T-C.; Kou, S-C.; Wang, Q.Y.; Poon, C-S. (2011) Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks. Waste Manag. 31 [8], 1859-1866. https://doi.org/10.1016/j.wasman.2011.04.010 PMid:21570277

Kou, S-C.; Poon, C-S.; Etxeberria, M. (2014) Residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures. Cem. Concr. Compos. 53, 73-82. https://doi.org/10.1016/j.cemconcomp.2014.06.001

Barbudo, M.A.; Agrela, F.; Ayuso, J.; Jiménez, J.R.; Poon, C-S. (2012) Statistical analysis of recycled aggregates derived from different sources for sub-base applications. Constr. Build. Mater. 28 [1], 129-38. https://doi.org/10.1016/j.conbuildmat.2011.07.035

Sánchez de Juan, M.; Gutiérrez Alaejos, P. (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr. Build. Mater. 23, [2] 872-7. https://doi.org/10.1016/j.conbuildmat.2008.04.012

Poon, C-S.; Shui, Z.; Lam, L. (2004) Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. Constr. Build. Mater. 18, [6] 461-468. https://doi.org/10.1016/j.conbuildmat.2004.03.005

Xiao, J.; Li, J.; Zhang, C. (2005) Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem. Concr. Res. 35 [6], 1187-1194. https://doi.org/10.1016/j.cemconres.2004.09.020

Etxeberria, M.; Vázquez-Ramonich, E.; Marí, A.R.; Barra de Oliveira, M. (2007) Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 37 [5], 735-742. https://doi.org/10.1016/j.cemconres.2007.02.002

Katz, A. (2003) Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 33 [5], 703-711. https://doi.org/10.1016/S0008-8846(02)01033-5

Hansen, T.C. (1986) Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945-198. Mater. Struct. 19 [111], 201-46. https://doi.org/10.1007/BF02472036

Buck, A.D. (1977) Recycled concrete as a source of aggregate. J. Am. Concr. Inst. 74, [5] 212-219. https://doi.org/10.14359/11004

Barra de Oliveira, M.; Vázquez-Ramonich, E. (1996) The influence of retained moisture in aggregates from recycling on the properties of new hardened concrete. Waste Manag. 16 [1-3], 113-117. https://doi.org/10.1016/S0956-053X(96)00033-5

Hansen, T.C.; Narud, H. (1983) Strength of recycled concrete made from crushed concrete coarse aggregate. Concr. Int. 5 [01], 79-83. Retrieved form https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&ID=9140.

Parlamento Europeo; Consejo de la Unión Europea. (2008) Directiva 2008/98/CE del Parlamento Europeo y del Consejo de 19 de noviembre de 2008 sobre los residuos y por la que se derogan determinadas Directivas. DOUE. L 312 [22 de noviembre], 28.

Ministerio de la Presidencia. (2008) Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición. BOE. 38, [13 de febrero] 11. Retrieved form http://www.boe.es/boe/dias/2008/02/13/pdfs/A07724-07730.pdf.

Jefatura del Estado. (2011) Ley 22/2011, de 28 de julio, de residuos y suelos contaminados. BOE. 181 [29 de julio], 56. Retrieved form http://www.minetur.gob.es/.

Solís-Guzmán, J.; Marrero, M.; Montes-Delgado, M.V.; Ramírez-de-Arellano, A. (2009) A Spanish model for quantification and management of construction waste. Waste Manag. 29 [9], 2542-2548. https://doi.org/10.1016/j.wasman.2009.05.009 PMid:19523801

Corinaldesi, V.; Moriconi, G. (2009) Influence of mineral additions on the performance of 100% recycled aggregate concrete. Constr. Build. Mater. 23 [8], 2869-2876. https://doi.org/10.1016/j.conbuildmat.2009.02.004

Comisión Europea. (2013) Decisión No 1386/2013/UE del parlamento europeo y del consejo de 20 de noviembre de 2013 relativa al Programa general de acción de la Unión en materia de medio ambiente hasta 2020 "Vivir bien, respetando los límites de nuestro planeta" (VII PMA). DOUE. [28 diciembre], 30.

Comisión Europea. (2012) COM 433. Comunicación de la comisión al parlamento europeo y al consejo. Estrategia para una competitividad sostenible del sector de la construcción y de sus empresas. Bruselas. [31 de julio], 1-16.

Martín-Morales, M.; Zamorano, M.; Valverde-Palacios, I.; Cuenca-Moyano, G.M.; Sánchez-Roldán, Z. (2013) Quality control of recycled aggregates (RAs) from construction and demolition waste (CDW). In: Handbook of Recycled Concrete and Demolition Waste Woodhead Publishing Limited. 2013. 270-303. https://doi.org/10.1533/9780857096906.2.270

Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. (2018) A review of recycled aggregate in concrete applications (2000-2017) Constr. Build. Mater. 172, 272-292. https://doi.org/10.1016/j.conbuildmat.2018.03.240

Marinković, S.B.; Radonjanin, V.; Malešev, M.; Ignjatović, I.S. (2010) Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 30 [11], 2255-2264. https://doi.org/10.1016/j.wasman.2010.04.012 PMid:20434898

Pedro, D.; de Brito, J.; Evangelista, L. (2015) Performance of concrete made with aggregates recycled from precasting industry waste: influence of the crushing process. Mater Struct. 48, 3965-3978. https://doi.org/10.1617/s11527-014-0456-7

Topcu, I.B.; Güncan, N.F. (1995) Using waste concrete as aggregate. Cem. Concr. Res. 25 [7], 1385-1390. https://doi.org/10.1016/0008-8846(95)00131-U

Bairagi, N.K.; Vidyadhara, H.S.; Ravande, K. (1990) Mix design procedure for recycled aggregate concrete. Constr. Build. Mater. 4 [4], 188-193. https://doi.org/10.1016/0950-0618(90)90039-4

Bairagi, N.K.; Ravande, K.; Pareek, V.K. (1993) Behaviour of concrete with different proportions of natural and recycled aggregates. Resour. Conserv. Recycl. 9 [1-2], 109-126. https://doi.org/10.1016/0921-3449(93)90036-F

Published

2022-03-22

How to Cite

Sánchez-Roldán, Z. ., Zamorano, M. ., & Martín-Morales, M. . (2022). The use of recycled aggregates in the construction sector: a scientific bibliometric analysis. Materiales De Construcción, 72(345), e277. https://doi.org/10.3989/mc.2022.07421

Issue

Section

Research Articles