Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente

Autores/as

  • J. M. Mejía Universidad del Valle
  • R. Mejía de Gutiérrez Universidad del Valle
  • F. Puertas Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc-CSIC)

DOI:

https://doi.org/10.3989/mc.2013.04712

Palabras clave:

cementos alcalinos, ceniza de cascarilla de arroz, waterglass, resistencias mecánicas, microestructura

Resumen


Este estudio evalúa la viabilidad de utilizar un subproducto agroindustrial, la ceniza de cascarilla de arroz (RHA) proveniente de un equipo combustor de una empresa Arrocera en Colombia, como reemplazo total de la sílice aportada por el silicato de sodio comercial en sistemas cementicios activados alcalinamente. Se prepararon pastas de ceniza volante (FA), de escoria de alto horno (GBFS) y un sistema binario 50FA:50GBFS, que fueron activadas por una mezcla de silicato de sodio e hidróxido de sodio, y por dos tipos de RHA. Las mezclas se caracterizaron mecánica, mineralógica y microestructuralmente. Los resultados demuestran que es posible obtener materiales activados alcalinamente con resistencias mecánicas del orden de 42 MPa, a 7 días de curado, utilizando el subproducto agroindustrial. Este estudio corrobora que tanto la sílice amorfa como parte de la sílice cristalina presente en RHA tienen la posibilidad de participar en el proceso de activación alcalina, siempre y cuando las condiciones de alcalinidad estén adecuadamente ajustadas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Davidovits, J.: Geopolymer chemistry and applications, pp. 3-12, Institut Geopolymere, Saint Quentin (2008).

(2) Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S.: "Alkali-activated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products", Constr. and Build. Mater., vol. 22, n° 7 (2008), pp. 1305-1314. http://dx.doi.org/10.1016/j.conbuildmat.2007.10.015

(3) Cioffi, R.; Maffucci, L.; Santoro L.: "Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue", Resources, Conservation and Recycling, vol. 40, n° 1 (2003), pp. 27-38. http://dx.doi.org/10.1016/S0921-3449(03)00023-5

(4) Van Deventer, J.S.J.; Provis, J.L.; Duxson, P.: "Technical and commercial progress in the adoption of geopolymer cement", Minerals Engineering, vol. 29 (2012), pp. 89-104. http://dx.doi.org/10.1016/j.mineng.2011.09.009

(5) Komnitsas. K.; Zaharaki, D.: "Geopolymerisation: A review and prospects for the minerals industry", Minerals Engineering, vol. 20 n° 14 (2007), pp. 1261-1277. http://dx.doi.org/10.1016/j.mineng.2007.07.011

(6) Zheng, L.; Wang, C.; Wang, W.; Shi, Y.; Gao, X.: "Immobilization of MSWI fly ash through geopolymerization: Effects of water-wash", Waste Management, vol. 31, n° 2 (2011), pp. 311-317. http://dx.doi.org/10.1016/j.wasman.2010.05.015 PMid:20609574

(7) Xu, H.; Van Deventer, J.S.J.: "The geopolymerisation of alumino-silicate minerals". Int. J. Miner. Process.; vol. 59, n° 3 (2000), pp. 247-266. http://dx.doi.org/10.1016/S0301-7516(99)00074-5

(8) García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.; Macphee, D.E.: "Effect of Calcium Additions on N–A–S–H Cementitious Gels", J. Am. Ceram. Soc., vol. 93, n° 7 (2010), pp. 1934-1940.

(9) Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J.: "A model for the C-A-S-H gel formed in alkali-activated slag cements", Journal of the European Ceramic Society, vol. 31, n° 2 (2011), pp. 2043-2056. http://dx.doi.org/10.1016/j.jeurceramsoc.2011.04.036

(10) Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J.: "Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator", J. Am. Ceram. Soc., vol. 86, n° 8 (2003), pp. 1389-1394. http://dx.doi.org/10.1111/j.1151-2916.2003.tb03481.x

(11) Puertas, F.; Fernández-Jiménez, A.; Blanco-Varela, M.T.: "Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate", Cem. Concr. Res., vol. 34, n° 1 (2004), pp. 139-148. http://dx.doi.org/10.1016/S0008-8846(03)00254-0

(12) Bernal, S.A.; Mejía de Gutierrez, R.; Ruiz, F.; Qui-ones, H.; Provis, J.L. "High-temperature performance of mortars and concretes base don alkali-activated slag/metakaolin blends", Mater Construcc, vol. 62, nº 308 (2012), pp. 471-488. http://dx.doi.org/10.3989/mc.2012.01712

(13) Sánchez, R.; Palacios, M.; Puertas, F.: "Cementos petroleros con adición de escoria de horno alto. Características y propiedades", Mater. Construcc., vol. 61, n° 302 (2011), pp. 185-211.

(14) Duxson, P.; Fernández-Jiménez, A; Provis, J. L; Lukey, G. C.; Palomo, A; Van Deventer, J.S.J.: "Geopolymer Technology: The Current State of the Art", J. Mater. Sci, vol. 42 (2007), pp. 2917-2933. http://dx.doi.org/10.1007/s10853-006-0637-z

(15) Davidovits, J.: "30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs", Geopolymer 2002 Conference, Melbourne, Australia, October 28-29 (2002).

(16) Konstantinos, K. A.: "Potential of geopolymer technology towards green buildings and sustainable cities", Procedia Engineering, vol. 21 (2011), pp. 1023-1032. http://dx.doi.org/10.1016/j.proeng.2011.11.2108

(17) Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H.: "Advances in alternative cementitious binders", Cem. Concr. Res., vol. 41, n° 12 (2011), pp. 1232-1243. http://dx.doi.org/10.1016/j.cemconres.2010.11.012

(18) Shi, C.; Fernández-Jiménez, A.; Palomo, A.: "New cements for the 21st century: The pursuit of an alternative to Portland cement", Cem. Concr. Res., vol. 41, n°7 (2011), pp. 750-763. http://dx.doi.org/10.1016/j.cemconres.2011.03.016

(19) Van Deventer, J.S.J.; Provis, J.L.; Duxson, P.; Brice, D.G.: "Chemical research and climate change as drivers in the commercial adoption of alkali activated materials", Waste Biomass Valor, vol. 1, n° 1 (2010), pp. 145-155. http://dx.doi.org/10.1007/s12649-010-9015-9

(20) Fernández-Jiménez, A.; Palomo, A.: "Composition and microstructure of alkali activated fly ash binder: Effect of the activator", Cem. Concr. Res., vol. 35, n° 10 (2005), pp.1984-1992. http://dx.doi.org/10.1016/j.cemconres.2005.03.003

(21) Fernandez-Jiménez, A.; Palomo, A.; Criado, M.: "Alkali activated fly ash binders. A comparative study between sodium and potassium activators". Mater. Construcc., vol. 56, n°281 (2006), pp. 52-65.

(22) Oh, J. E.; Monteiro, P.J.M.; Jun, S.S.; Choi, S.; Clark, S. M.: "The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers", Cem. Concr. Res., vol. 40, n° 2 (2010), pp. 189-196. http://dx.doi.org/10.1016/j.cemconres.2009.10.010

(23) Panias, D.; Giannopoulou, I.P.; Perraki, T.: "Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers", Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 301, n° 1-3 (2007), pp. 246-254. http://dx.doi.org/10.1016/j.colsurfa.2006.12.064

(24) Řezník, B.; Fry’bortova´, I.; Rovnaníková, P.: "Properties of alkali-activated fly ash with respect to the silicate modulus of activator", 4th International Conference Non-traditional Cement & Concrete (2011), pp. 139-147.

(25) Provis, J.L.; Yong, C.Z.; Duxson P.; Van Deventer, J.S.J.: "Correlating mechanical and thermal properties of sodium silicate-fly ash geopolymers", Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 336, n° 1-3 (2009), pp. 57-63. http://dx.doi.org/10.1016/j.colsurfa.2008.11.019

(26) Nazari, A.; Bagheri, A.; Riahi, S.: "Properties of geopolymer with seeded fly ash and rice husk bark ash", Materials Science and Engineering A, vol. 528, n° 24 (2011), pp. 7395-7401. http://dx.doi.org/10.1016/j.msea.2011.06.027

(27) Mehta, P. K.: Belgium Patent 802909, July 1973.

(28) Palacios, M.; Puertas, F.: "Effectiveness of mixing time on hardened properties of waterglass-activated slag pastes and mortars", ACI Materials Journal, vol. 108, n° 1 (2011), pp. 73-78.

(29) Fernández-Jiménez, A.; Palomo, A.: "Characterisation of fly ash. Potencial reactivity as alkaline cements", Fuel, vol. 82, n° 18 (2003), pp. 2259-2265. http://dx.doi.org/10.1016/S0016-2361(03)00194-7

(30) Bejarano, J.; Garzón, C.; Mejía de Gutiérrez, R.; Delvasto, S.; Gordillo, M.: "Obtención de soluciones de silicato de sodio a partir de cenizas de cascarilla de arroz", II Simposio Aprovechamiento de residuos agro-industriales como fuente sostenible de materiales de construcción. Valencia, 8 y 9 de noviembre de 2010 (pp. 409-418).

(31) Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T.: "Alkali-activated fly ash/slag cement Strength behaviour and hydration products", Cem. Concr. Res., vol. 30, n° 10 (2000), pp. 1625-1632. http://dx.doi.org/10.1016/S0008-8846(00)00298-2

(32) Puertas, F.; Fernández-Jiménez, A.: "Mineralogical and microstructural characterization of alkali-activated fly ash/slag pastes", Cem. Concr. Comp., vol. 25, n° 3 (2003), pp. 287-292. http://dx.doi.org/10.1016/S0958-9465(02)00059-8

(33) Kumar, S.; Kumar, R.; Mehrotra, S. P.: "Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer", J. Mater. Sci., vol. 45, n° 3 (2010), pp. 607-615. http://dx.doi.org/10.1007/s10853-009-3934-5

(34) Temuujin, J.; Williams, R.P.; Van Riessen, A.: "Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature", Journal of Materials Processing Technology, vol. 209, n° 12-13 (2009), pp. 5276-5280. http://dx.doi.org/10.1016/j.jmatprotec.2009.03.016

(35) Temuujin, J; Van Riessen, A; Williams, R.: "Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes", Journal of Hazardous Materials, vol. 167, n°1-3 (2009), pp. 82-88. http://dx.doi.org/10.1016/j.jhazmat.2008.12.121 PMid:19201089

(36) Izquierdo, M.; Querol, X.; Phillipart, C.; Antenucci, D.; Towler, M.: "The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers", Journal of Hazardous Materials, vol. 176, n°1-3 (2010), pp. 623-628. http://dx.doi.org/10.1016/j.jhazmat.2009.11.075 PMid:20005626

(37) Izquierdo, M.; Querol, X.; Davidovits, J.; Antenucci, D.; Nugteren, H.; Fernández-Pereira, C.: "Coal fly ash-slag-based geopolymers: Microstructure and metal leaching", Journal of Hazardous Materials, vol. 166, n°1 (2009), pp. 561-566. http://dx.doi.org/10.1016/j.jhazmat.2008.11.063 PMid:19118943

(38) Fernández-Jiménez, A.; Palomo, J.G.; Puertas, F.: "Alkali-activated slag mortars. Mechanical strength behavior". Cem. Concr. Res., vol. 29, n°1 (1999), pp. 1313-1321. http://dx.doi.org/10.1016/S0008-8846(99)00154-4

(39) Reza, M.; Karbalaie, M.: "An experimental study on compressive strength of concrete containing crumb rubber", International Journal of Civil & Environmental Engineering, vol. 11, n° 03 (2011), pp. 24-28.

(40) Huang, B.; Shu, X.; Li, G.: "Laboratory investigation of portland cement concrete containing recycled asphalt pavements", Cem. Concr. Res., vol. 35, n° 10 (2005), pp. 2008-2013. http://dx.doi.org/10.1016/j.cemconres.2005.05.002

(41) Wu, X.; Zhu, H.; Hou, X.; Li, H.: "Study on steel slag and fly ash composite Portland cement", Cem. Concr. Res., vol. 29, n° 7 (1999), pp. 1103-1106.

(42) Bernal, S.; Herfort, D.; Skibsted, J.: "Hybrid binders based on alkali sulfate-activated Portland clinker and metacaolín", XIII ICCC International congress on the chemistry of cement, Madrid, 3-8 July, 2011.

(43) Lecomte, I.; Henrist, C.; Liégeois, M.; Maseri, F.; Rulmont, A.; Cloots, R.: "(Micro)-structural comparison between geopolymers, alkaliactivated slag cement and Portland cement", Journal of the European Ceramic Society, vol. 26, n° 16 (2006), pp. 3789-3797. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.12.021

(44) García-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; Macphee D.E.: "Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O", Cem. Concr. Res., vol. 41, n° 9 (2011), pp. 923–931. http://dx.doi.org/10.1016/j.cemconres.2011.05.006

(45) Kovalchuk, G.; Fernández-Jiménez, A.; Palomo, A.: "Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry", Mater. Construcc., vol. 58, n°291 (2008), pp. 35-52.

(46) Fernández-Jiménez, A.; Palomo, A.: "New Cementitious Materials Based on Alkali-Activated Fly Ash: Performance at High Temperatures", J. Am. Ceram. Soc.; vol. 91, n°10 (2008), pp. 3308-3314. http://dx.doi.org/10.1111/j.1551-2916.2008.02625.x

(47) Criado, M.; Fernández-Jiménez, A.; De La Torre, A.G.; Aranda, M.A.G.; Palomo, A.: "An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash", Cem. Concr. Res., vol. 37, n° 5 (2007), pp. 671-679. http://dx.doi.org/10.1016/j.cemconres.2007.01.013

(48) Criado, M.; Fernández-Jiménez, A.; Palomo, A.; Sobrados, I.; Sanz, J.: "Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey", Microporous and Mesoporous Materials, vol.109, n° 1-3 (2008), pp. 525-534. http://dx.doi.org/10.1016/j.micromeso.2007.05.062

(49) Palacios, M.; Puertas, F.: "Effect of Carbonation on Alkali-Activated Slag Paste", J. Am. Ceram. Soc, vol. 89 n° 10 (2006), pp. 3211-3221. http://dx.doi.org/10.1111/j.1551-2916.2006.01214.x

(50) Schneider, J. A.; Cincotto, M.; Panepucci, H.: "29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes", Cem. Concr. Res., vol. 31, n° 7 (2001), pp. 993-1000. http://dx.doi.org/10.1016/S0008-8846(01)00530-0

(51) Wang, S. D.; Scrivener, K.L.: "Si-29 and Al-27 NMR study of alkali-activated slag", Cem. Concr. Res., vol. 33, n° 5 (2003), pp. 769-774. http://dx.doi.org/10.1016/S0008-8846(02)01044-X

(52) Criado, M.; Fernández-Jiménez, A.; Palomo, A.: "Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description", Fuel, vol. 89, n°11 (2010), pp. 3185–3192. http://dx.doi.org/10.1016/j.fuel.2010.03.051

(53) Fernández-Jiménez, A.; Monzó, M.; Vicent, M.; Barba, A.; Palomo, A.: "Alkaline activation of metakaolin–fly ash mixtures: Obtain of Zeoceramics and Zeocements", Microporous and Mesoporous Materials, vol. 108, n° 1-3 (2008), pp. 41-49. http://dx.doi.org/10.1016/j.micromeso.2007.03.024

Descargas

Publicado

2013-09-30

Cómo citar

Mejía, J. M., Mejía de Gutiérrez, R., & Puertas, F. (2013). Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente. Materiales De Construcción, 63(311), 361–375. https://doi.org/10.3989/mc.2013.04712

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 7 > >>