Modificación del factor de eficacia de las bielas en vigas de canto de hormigón reforzadas con laminados de polímero reforzado con fibras de carbono

Autores/as

  • M. Panjehpour University Putra Malaysia,
  • A. A. A. Ali University Putra Malaysia,
  • Y. L. Voo DURA Technology
  • F. N. Aznieta University Putra Malaysia,

DOI:

https://doi.org/10.3989/mc.2014.02913

Palabras clave:

Viga de canto, Resistencia efectiva de la biela, CFRP, Cortante, Modelo de bielas y tirantes

Resumen


En este trabajo se propone un método en el que se modifica el factor de eficacia que se aplica a las bielas en el modelo de bielas y tirantes para vigas de canto de hormigón reforzadas con laminados CFRP (polímero reforzado con fibras de carbono). Mediante el ensayo a cuatro puntos se determina la resistencia a flexotracción de doce vigas de canto divididas en dos grupos de seis, las del primer grupo de hormigón armado normal y las del segundo de hormigón reforzado con laminados de CFRP. En ambos grupos cada una de las seis vigas se caracteriza por una relación luz de cortante-canto útil distinta, con valores utilizados de: 0.75, 1.00, 1.25, 1.50, 1.75, y 2.00. El valor teórico de la deformación principal por tracción de la biela reforzada con CFRP se modifica de acuerdo con la relación empírica propuesta en este trabajo. Esta se establece a partir de otras dos: la relación entre los valores experimental y teórico de la deformación por tracción principal y la relación luz de cortante-canto útil de las vigas de canto.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ACI (2011) Building Code Requirements for Structural Concrete and Commentary, section 10.7 and R10.7.

Kong, F.K. (1990) Reinforced Concrete Deep Beams. Blackie, Glasgow and London.

Wight, J.K.; Macgregor, J.G. (2009) Reinforced Concrete Mechanics and Design. Pearson Prentice Hall, United States.

Benachour, A.; Benyoucef, S.; Tounsi, A.; Adda bedia, E.A. (2008) Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate. Engineering Structures. 30 [11], 3305–3315. http://dx.doi.org/10.1016/j.engstruct.2008.05.007

Jalali, M.; Sharbatdar, M.K.; Chen, J.-F.; Jandaghi Alaee, F. (2012) Shear strengthening of RC beams using innovative manually made NSM FRP bars. Construction and Building Materials. 36 [0], 990–1000. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.068

Panjehpour, M.; Farzadnia, N.; Anwar, M.P.; Ali1, A.A.A. (2011) FRP sheet contribution in common repair techniques of concrete structures with emphasis on concrete columns. International Journal of Sustainable Construction Engineering & Technology. 2 [2], 54–61.

Panjehpour, M.; Rashid, R.S.M.; Aznieta, F.N.; Ali, A.A.A. (2012) A review for characterisation of FRP composite in the concrete structures. 11th International Conference on Concrete Engineering and Technology 2012 (CONCET), Putrajaya, Malaysia, 12–13 June.

Rizzo, A.; De Lorenzis, L. (2009) Behavior and capacity of RC beams strengthened in shear with NSM FRP reinforcement. Construc. Build. Mat. 23 [4], 1555–1567. http://dx.doi.org/10.1016/j.conbuildmat.2007.08.014

Nardone, F.; Lignola, G.P.; Prota, A.; Manfredi, G.; Nanni, A. (2011) Modeling of flexural behavior of RC beams strengthened with mechanically fastened FRP strips. Composite Structures. 93 [8], 1973–1985. http://dx.doi.org/10.1016/j.compstruct.2011.03.003

Rasheed, H.A.; Pervaiz, S. (2003) Closed form equations for FRP flexural strengthening design of RC beams. Composites Part B: Engineering. 34 [6], 539–550. http://dx.doi.org/10.1016/S1359-8368(03)00047-7

Chen, G.M.; Teng, J.G.; Chen, J.F. (2012) Process of debonding in RC beams shear-strengthened with FRP U-strips or side strips. International Journal of Solids and Structures. 49 [10], 1266–1282. http://dx.doi.org/10.1016/j.ijsolstr.2012.02.007

Godat, A.; Chaallal, O. (2012) Strut-and-tie method for externally bonded FRP shear-strengthened large-scale RC beams. Composite Structures. 99 [0], 327–338.

Godat, A.; Chaallal, O.; Neale, K.W. (2012) Nonlinear finite element models for the embedded through-section FRP shear-strengthening method. Computers & Structures.119 [0], 12–22.

Godat, A.; Labossière, P.; Neale, K.W. (2012) Numerical investigation of the parameters influencing the behaviour of FRP shear-strengthened beams. Construc. Build. Mat. 32 [0], 90–98. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.110

Godat, A.; Labossière, P.; Neale, K.W.; Chaallal, O. (2012) Behavior of RC members strengthened in shear with EB FRP: Assessment of models and FE simulation approaches. Computers & Structures. 92–93 [0], 269–282 http://dx.doi.org/10.1016/j.compstruc.2011.10.018

Nasrollahzadeh, K.; Basiri, M.M. (2014) Prediction of shear strength of FRP reinforced concrete beams using fuzzy inference system. Expert Systems with Applications. 41 [4], 1006–1020. http://dx.doi.org/10.1016/j.eswa.2013.07.045

Pellegrino, C.; Vasic, M. (2013) Assessment of design procedures for the use of externally bonded FRP composites in shear strengthening of reinforced concrete beams. Composites Part B: Engineering. 45 [1], 727–741. http://dx.doi.org/10.1016/j.compositesb.2012.07.039

Perera, R.; Ruiz, A. (2012) Design equations for reinforced concrete members strengthened in shear with external FRP reinforcement formulated in an evolutionary multi-objective framework. Composites Part B: Engineering. 43 [2], 488–496. http://dx.doi.org/10.1016/j.compositesb.2011.10.013

Perera, R.; Vique, J.; Arteaga, A.; Diego, A.D. (2009) Shear capacity of reinforced concrete members strengthened in shear with FRP by using strut-and-tie models and genetic algorithms. Composites Part B: Engineering. 40 [8], 714–726. http://dx.doi.org/10.1016/j.compositesb.2009.06.008

El Maaddawy, T.; Sherif, S. (2009) FRP composites for shear strengthening of reinforced concrete deep beams with openings. Composite Structures. 89 [1], 60–69. http://dx.doi.org/10.1016/j.compstruct.2008.06.022

Hawileh, R.A.; El-Maaddawy, T.A.; Naser, M.Z.(2012) Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites. Materials & Design. 42 [0], 378–387. http://dx.doi.org/10.1016/j.matdes.2012.06.004

Lee, H.K.; Cheong, S.H.; Ha, S.K.; Lee, C.G. (2011) Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets. Composite Structures. 93 [2], 911–922. http://dx.doi.org/10.1016/j.compstruct.2010.07.002

Abdalla, J.A.; Hawileh, R.; Al-Tamimi, A. (2011) Prediction of FRP-concrete ultimate bond strength using Artificial Neural Network. Paper presented at the Modeling, Simulation and Applied Optimization (ICMSAO), 4th International Conference on Kuala lumpur, 19–21.

Lu, X.Z.; Teng, J.G.; Ye, L.P.; Jiang, J.J. (2005) Bond–slip models for FRP sheets/plates bonded to concrete. Engineering Structures. 27 [6], 920–937. http://dx.doi.org/10.1016/j.engstruct.2005.01.014

Mashrei, M.A.; Seracino, R.; Rahman, M.S. (2013) Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints. Construc. Build. Mat. 40, 812–821. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.109

Seo, S.-Y.; Feo, L.; Hui, D. (2013) Bond strength of near surface-mounted FRP plate for retrofit of concrete structures. Composite Structures. 95 [0], 719–727. http://dx.doi.org/10.1016/j.compstruct.2012.08.038

Tighiouart, B.; Benmokrane, B.; Mukhopadhyaya, P. (1999) Bond strength of glass FRP rebar splices in beams under static loading. Construc. Build. Mat. 13 [7], 383–392. http://dx.doi.org/10.1016/S0950-0618(99)00037-9

Tuakta, C.; Büyüköztürk, O.; M.ASCE. (2011) Conceptual model for prediction of FRP-concrete bond strength under moisture cycles. Ournal of composites for construction (ASCE). 2 [1].

De Lorenzis, L.; Miller, B.; Nanni, A. (2001) Bond of FRP laminates to concrete. ACI Materials Journal. 98 [3], 256–264.

AASHTO: LRFD, bridge design specifications, customary U.S. units: 2008 interim revisions, 4 ed. American Association of State Highway and Transportation Officials, Washington.

AS3600 (2009) Australian standard for Concrete structures. In., p. 198. standard association of Australia, North sydney.

Béton, F.I.d.: Model Code 2010. vol. v. 1. International Federation for Structural Concrete (fib).

CAN/CSA-S6-06 (2006) Canadian highway bridge design code and S6.1-06 commentary on CAN/CSA-S6-06, Canadian Highway Bridge Design Code. Association canadienne de normalisation.

CSA-A23.3-04 (2005) Technical Committee on Reinforced Concrete Design. A23.3-04 Design of Concrete Structures. Canadian Standards Association.

DIN: Building and Civil Engineering Standards Committee (2001) Plain, Reinforced and Prestressed Concrete Structures, Part 1: Design and Construction (DIN 1045-1). Deutsches Institut für Normung (DIN-Normen), Berlin, Germany.

NZS (2006) Concrete Design Committee P 3101 for the Standards Council. Concrete Structures Standard: Part 1-The Design of Concrete Structures (NZS 3101-1). Standards New Zealand, Wellington.

Vecchio, F.J.; Collins, M.P. (1986) The modified compression-field theory for reinforced concrete elements subjected to shear, Title no. 83-22. ACI Journal.

Panjehpour, M.; Ali, A.A.A.; Anwar, M.P.; Aznieta, F.N.; Voo, Y.L. (2012) An overview of strut-and-tie model and its common challenges. International journal of engineering research in Africa 8, 37–45.

Panjehpour, M.; Ali, A.A.A.; Voo, Y.L.; Aznieta, F.N. (2012) Strut elaboration in strut-and-tie model. ConstructII 2, 45–53.

Bruggi, M. (2009) Generating strut-and-tie patterns for reinforced concrete structures using topology optimization. Computers & Structures. 87 [23–24], 1483–1495. http://dx.doi.org/10.1016/j.compstruc.2009.06.003

He, Z.-Q.; Liu, Z. (2010) Optimal three-dimensional strut-and-tie models for anchorage diaphragms in externally prestressed bridges. Engineering Structures. 32 [8], 2057–2064. http://dx.doi.org/10.1016/j.engstruct.2010.03.006

Khalifa, E.S. (2010) Macro-mechanical strut and tie model for analysis of fibrous high-strength concrete corbels. Ain Shams Engineering Journal. 3 [4], 359–365. http://dx.doi.org/10.1016/j.asej.2012.04.004

Kwak, H.-G.; Noh, S.-H. (2006) Determination of strut-and-tie models using evolutionary structural optimization. Engineering Structures. 28 [10], 1440–1449. http://dx.doi.org/10.1016/j.engstruct.2006.01.013

Perera, R.; Vique, J. (2009) Strut-and-tie modelling of reinforced concrete beams using genetic algorithms optimization. Construc. Build. Mat. 23 [8], 2914–2925. http://dx.doi.org/10.1016/j.conbuildmat.2009.02.016

Tjhin, T.N.; Kuchma, D.A. (2007) Integrated analysis and design tool for the strut-and-tie method. Engineering Structures. 29 [11], 3042–3052. http://dx.doi.org/10.1016/j.engstruct.2007.01.032

Wang, G.-L.; Meng, S.-P. (2008) Modified strut-and-tie model for prestressed concrete deep beams. Engineering Structures. 30 [12], 3489–3496. http://dx.doi.org/10.1016/j.engstruct.2008.05.020

Zhang, N., Tan, K.-H. (2007) Size effect in RC deep beams: Experimental investigation and STM verification. Engineering Structures. 29 [12], 3241–3254. http://dx.doi.org/10.1016/j.engstruct.2007.10.005

Publicado

2014-03-30

Cómo citar

Panjehpour, M., Ali, A. A. A., Voo, Y. L., & Aznieta, F. N. (2014). Modificación del factor de eficacia de las bielas en vigas de canto de hormigón reforzadas con laminados de polímero reforzado con fibras de carbono. Materiales De Construcción, 64(314), e016. https://doi.org/10.3989/mc.2014.02913

Número

Sección

Artículos