Estudio del proceso de descalcificación en morteros degradados en NH4NO3 empleando técnicas ultrasónicas

Autores/as

  • I. Segura Instituto de Automática Industrial (CSIC), Madrid
  • A. Moragues Universidad Politécnica de Madrid
  • D. E. Macphee Universidad de Aberdeen
  • J. J. Anaya Instituto de Automática Industrial (CSIC), Madrid
  • M. Molero Instituto de Automática Industrial (CSIC), Madrid

DOI:

https://doi.org/10.3989/mc.2009.46008

Palabras clave:

mortero, durabilidad, envejecimiento, microestructura, caracterización

Resumen


El agua interviene en la mayor parte de los procesos de deterioro que pueden sufrir los materiales cementicios durante su vida útil. El efecto de las aguas desionizadas no suele tenerse en cuenta dado que producen procesos controlados por la difusión y generan un deterioro poco apreciable a corto plazo. La posibilidad monitorizar esta degradación de un modo no destructivo es un reto importante, dado que las técnicas habituales de caracterización implican una alteración física del material. En este trabajo, mediante la aplicación de técnicas no destructivas de inspección ultrasónica, se ha caracterizado el proceso de degradación sufrido por probetas de mortero sumergidas en una solución de nitrato de amonio. Estos resultados fueron comparados con los obtenidos en la caracterización destructiva, empleando, porosimetría de intrusión de mercurio (PIM), porosidad accesible al agua, difracción de rayos-X (DRX) y análisis de microscopía electrónica de barrido (MEB). El análisis de los perfiles de velocidad ultrasónica de las muestras ha permitido calcular las profundidades degradadas, con una buena correlación entre estos resultados y los obtenidos por técnicas destructivas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) EHE-99 “Instrucción Española de Hormigón Estructural”. Ministerio de Fomento, España, 1999.

(2) Berner, U. R.: “Modelling the incongruent dissolution of hydrated cement minerals”. Radiochim. Acta, vol. 44/45, nº (1988), pp. 387- 393.

(3) Porteneuve, C.; Zani, H.; Vernet, C.; Kjellsen, K.; Korb, J.-P., y Petit, D.: “Nuclear magnetic resonance characterization of high- and ultrahigh-performance concrete: Application to the study of water leaching”. Cem. Concr. Res., vol. 31, nº 12 (2001), pp. 1887-1894. doi:10.1016/S0008-8846(01)00648-2

(4) Cardé, C.; Escadeillas, G.; y Francois, R.: “Use of ammonium nitrate solution to simulate and accelerate the leaching of cement pastes due to deionised water”. Mag. Concr. Res., vol. 49, nº 181 (1997), pp. 295-301. doi:10.1680/macr.1997.49.181.295

(5) Saito, H., y Deguchi, A.: “Leaching tests on different mortars using accelerated electrochemical method”. Cem. Concr. Res., vol. 30, nº (2000), pp. 1815-1825.

(6) Jauberthie, R., y Rendell, F.: “Physicochemical study of the alteration surface of concrete exposed to ammonium salts”. Cem. Concr. Compos., vol. 33, nº (2003), pp. 85-91.

(7) Le Bellego, C.; Gèrard, B.; y Pijaudier-Cabot, G.: “Chemo-mechanical effects in mortar beams subjected to water hydrolysis”. J. Eng. Mech., vol. 126, nº 3 (2000), pp. 266-272. doi:10.1061/(ASCE)0733-9399(2000)126:3(266)

(8) Heukamp, F. H. Tesis doctoral: “Chemomecanics of Calcium Leaching of Cement-Based Materials at Different Scales: The Role of CH-Dissolution and CSH Degradation on Strength and Durability Performance of Materials and Structures”. Massachusetts Institute of Technology. 2003.

(9) Samson, E., and Marchand, J.: "Modeling the transport of ions in unsaturated cement-based materials". Comp. Struc., Vol. 85, nº 23-24 (2007), pp. 1740-1756.

(10) Panet, M.; Cheng, C.; Deschamps, M.; Poncelet, O., y Audoin, B.: “Microconcrete ageing ultrasonic identification”. Cem. Concr. Res., vol. 32, nº (2002), pp. 1831-1838.

(11) Naffa, S. O.; Goueygou, M.; Piwakowski, B.; y Buyle-Bodin, F.: “Detection of chemical damage in concrete using ultrasound”. Ultrasonics, vol. 40, nº (2002), pp. 247-251.

(12) Burlion, N.; Bernard, D., y Chen, D.: “X-Ray microtomography: Application to microstructure analysis of a cementitious material during leaching process”. Cem. Concr. Res., vol. 36, nº 2 (2006), pp. 346-357. doi:10.1016/j.cemconres.2005.04.008

(13) Hernández, M. G.; Anaya, J. J.; Ullate, L. G.; Cegarra, M., y Sánchez, T.: “Application of a micromechanical model of three phases to estimating the porosity of mortar by ultrasound”. Cem. Concr. Res., vol. 36, nº 4 (2006), pp. 617-624. doi:10.1016/j.cemconres.2004.07.018

(14) Hernández, M. G.; Anaya, J. J.; Ullate, L. G., y Ibáñez, A.: “Formulation of a new micromechanic model of three phases for ultrasonic characterization of cement-based materials”. Cem. Concr. Res., vol. 36, nº 4 (2006), pp. 609-616. doi:10.1016/j.cemconres.2004.07.017

(15) Hernández, M. G.; Anaya, J. J.; Izquierdo, M. A. G., y Ullate, L. G.: “Application of micromechanics to the characterization of mortar by ultrasound”. Ultrasonics, vol. 40, nº 1-8 (2002), pp. 217-221.

(16) Hernández, M. G.; Anaya, J. J.; Sánchez, T., y Segura, I.: “Porosity estimation of aged mortar using a micromechanical model”. Ultrasonics, vol. 44, nº 1 (2006), pp. e1007-e1011. doi:10.1016/j.ultras.2006.05.195 PMid:16814349

(17) Segura, I.; Anaya, J. J.; Hernández, M. G.; Macphee, D. E.; Moragues, A., y Sánchez, T.: “Microstructural characterization of aged mortar by destructive and non-destructive testing”, en 12th International Congress on the Chemistry of Cement, Montreal, Canadá. 2007.

(18) UNE-EN 196-1 Métodos de ensayo de cementos. Parte 1: Determinación de resistencia mecánicas AENOR, 1996.

(19) Heukamp, F. H.; Ulm, F., y Germaine, J. T.: “Mechanical properties of calcium-leached cement pastes. Triaxial stress states and the influence of the pore pressures”. Cem. Concr. Res., vol. 31, nº (2001), pp. 767-774.

(20) Le Bellego, C.; Pijaudier-Cabot, G.; Gérard, B.; Dubé, J.-F., y Molez, L.: “Coupled mechanical and chemical damage in calcium leached cementitious structures”. J. Eng. Mech., vol. 129, nº 3 (2003), pp. 333-341. doi:10.1061/(ASCE)0733-9399(2003)129:3(333)

(21) Constantinides, G. y Ulm, F.: “The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling”. Cem. Concr. Res., vol. 34, nº (2004), pp. 67-80.

(22) Guillon, E. Tesis doctoral: “Durabilité des matériaux cimentaires - Modélisation de l’influence des équilibres physico-chimiques sur la microstructure et les propiétés mécaniques résiduelles”. Laboratorie de Mécanique et Technologie, L’Ecole Normale Supérieure de Cachan. 2004.

(23) Moranville, M.; Kamali, S., y Guillon, E.: “Physicochemical equilibria of cement-based materials in aggressive environments - experiment and modelling”. Cem. Concr. Res., vol. 34, nº (2004), pp. 1569-1578.

(24) Perlot, C.; Verdier, J., y Carcassès, M.: “Influence of cement type on transport properties and chemical degradation: Application to nuclear waste storage”. Mater. Struct., vol. 39, nº (2006), pp. 511-523.

(25) García de Arriba, R.; Sagrado, J. D., y Madrazo, J. A. P.: “Determinación de la porosidad y la permeabilidad del hormigón endurecido”. Hormigón y Acero, vol. 193, nº (1994), pp. 105-116.

(26) RILEM-TC/14-CPC: “CPC 11.3 Absorption d’eau par immersion sous vide / Absorption of water by immersion under vacuum”. Mater. Struct., vol. 17, nº 101 (1984), pp. 391-394.

(27) Pascual, M. A. Tesis doctoral: “Estudio y extensión de un modelo micromecánico trifásico para la caracterización ultrasónica de materiales compuestos”. Dpto. de Ing. Civil: Construcción. ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid. 2007.

(28) Le Bellego, C. Tesis doctoral: “Couplage chimie-mecanique dans les structures en beton attaquees par l’eau: Etude experimentale et analyse numerique”. Laboratoire de Mécanique et Technologie - ENS Cachan, Ecole Normale Superieure de Cachan. 2001.

(29) Cardé, C.; Francois, R., y Torrenti, J.: “Leaching of both calcium hydroxide and CSH from cement paste: modelling the mechanical behaviour”. Cem. Concr. Res., vol. 26, nº 8 (1996), pp. 1257-1268. doi:10.1016/0008-8846(96)00095-6

(30) Faucon, P.; Adenot, F.; Jacquinot, J. F.; Petit, J. C.; Cabrillac, R., y Jorda, M.: “Long-term behaviour of cement pastes used for nuclear waste disposal: Review of physico-chemical mechanisms of water degradation”. Cem. Concr. Res., vol. 28, nº 6 (1998), pp. 847- 857. doi:10.1016/S0008-8846(98)00053-2

(31) Haga, K.; Sutou, S.; Hironaga, M.; Tanaka, S., y Nagasaki, S.: “Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste”. Cem. Concr. Res., vol. 35, nº 9 (2005), pp. 1764-1775. doi:10.1016/j.cemconres.2004.06.034

(32) Cardé, C. y Francois, R.: “Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties”. Cem. Concr. Res., vol. 27, nº 4 (1997), pp. 539-550. doi:10.1016/S0008-8846(97)00042-2

Descargas

Publicado

2009-12-30

Cómo citar

Segura, I., Moragues, A., Macphee, D. E., Anaya, J. J., & Molero, M. (2009). Estudio del proceso de descalcificación en morteros degradados en NH4NO3 empleando técnicas ultrasónicas. Materiales De Construcción, 59(296), 17–36. https://doi.org/10.3989/mc.2009.46008

Número

Sección

Artículos