Estudio cinético de la deshidratación térmica del fosfoyeso

Autores/as

  • F. A. López Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • H. Tayibi Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • I. García-Díaz Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)
  • F. J. Alguacil Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC)

DOI:

https://doi.org/10.3989/mc.2015.07214

Palabras clave:

Fosfoyeso, Cinética, Deshidratación, Comportamiento térmico, Cemento

Resumen


El fosfoyeso es un subproducto procedente del procesado de la roca fosfato. Una de las posibles vías de reutilización y revalorización es su uso como regulador del fraguado en la industria cementera. Debido a los posibles problemas de falso fraguado asociado a los procesos de deshidratación que tienen lugar durante la molienda del cemento, esta investigación estudió el comportamiento térmico, bajo condiciones no-isotérmicas en atmósfera de argón, de dos fosfoyesos, mediante TG-DTA y DSC. Los ensayos de DSC se realizaron hasta los 350 °C a diferentes velocidades de calentamiento. La temperatura de conversión del yeso a las formas de hemihidrato y anhidrita y el calor de hidratación fueron determinados. Las cinéticas de reacción fueron obtenidas analizando los datos de DSC mediante varios métodos. Se calculó la energía de activación y el factor de frecuencia para las reacciones de deshidratación del subproducto. Los valores de energía de activación de las principales reacciones de deshidratación del fosfoyeso fueron obtenidos, aproximadamente 61-118 kJ/mol.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Pérez-López, R.; Nieto, J.M.; López-Coto, I; Aguado, J.L.; Bolivar, J.P.; Santisteban, M. (2010). Dynamics of contaminants in phophogypsum or the fertilizer industry of Huelva (SW Spain): From phosphate rock ore to the environment. Appl. Geochem., 25 [5], 705–715. http://dx.doi.org/10.1016/j.apgeochem.2010.02.003

2. Rutherford, P.M.; Dudas, M.J.; Samek, R.A. (1994) Environmental impacts of phosphogypsum. Sci. Tot. Environ. 149 [1, 2], 1–38. http://dx.doi.org/10.1016/0048-9697(94)90002-7

3. Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J.; López-Delgado, A. (2009) Environmental impact and management of phosphogypsum. J. Environ. Manag. 90 [8], 2377–2386. http://dx.doi.org/10.1016/j.jenvman.2009.03.007 PMid:19406560

4. Kuryatnyk, T.; Angulski da luz, C.; Ambroise, J.; Pera, J. (2008) Valorization of phosphogypsum as hydraulic binder. J. Hazard. Mat. 160 [2–3], 681–687. http://dx.doi.org/10.1016/j.jhazmat.2008.03.014 PMid:18433998

5. Mas, J.L.; San Miguel, E.G.; Bolívar, J.P.; Vaca, F.; Pérez-Moreno, J.P. (2006) An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the South-West of Spain. Sci Tot. Environ. 364 [1–3], 55–66. http://dx.doi.org/10.1016/j.scitotenv.2005.11.006 PMid:16343599

6. Papastefanou, C.; Stoulos, S.; Ioannidou, A.; Manolopoulou, M. (2006) The application of phosphogypsum in agriculture and the radiological impact. J. Environ. Radioact. 89 [2], 188–189. http://dx.doi.org/10.1016/j.jenvrad.2006.05.005 PMid:16806608

7. Garrido, F.; Illera, V.; García-Gonzalez, M.T. (2005) Effect of the addition of gypsum and lime rich industrial by-products on Cd, Cu and Pb availability and leachability in metal-spiked acid soils. Appl. Geochem. 20 [2], 397–408. http://dx.doi.org/10.1016/j.apgeochem.2004.08.001

8. Abril, J.M.; García-Tenorio, R.; Periá-ez, R.; Enamorado, S.M.; Andreu, L.; Delgado, A. (2009) Occupational dosimetric assessment (inhalation pathway) from the application of phosphogypsum in agriculture in South West Spain. J. Environ. Radioact. 100, 29–34. http://dx.doi.org/10.1016/j.jenvrad.2008.09.006 PMid:19019506

9. Potgieter, J.H.; Potgieter, S.S.; McCrindle, R.I.; Strydom, C.A. (2003) An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render a suitable as a set retarder for cement. Cem. Concr. Res. 33 [8], 1223–1227. http://dx.doi.org/10.1016/S0008-8846(03)00036-X

10. Altun, I.A.; Sert, Y. (2004) Utilization of weathered phosphogypsum as set retarder in Portland cement. Cem. Concr. Res. 34, 677–680. http://dx.doi.org/10.1016/j.cemconres.2003.10.017

11. Garg, M.; Jain, N.; Singh, M. (2009) Development of alfa plaster from phosphogypsum for cementitious materials. Constr. Build. Mater. 23 [10], 3138–3143. http://dx.doi.org/10.1016/j.conbuildmat.2009.06.024

12. Garg, M.; Jain, N. (2010) Waste gypsum from intermediate dye industries for production of building materials. Constr. Build. Mater. 24 [9], 1632–1637. http://dx.doi.org/10.1016/j.conbuildmat.2010.02.029

13. Kacimi, L.; Simon-Masseron, A.; Ghomari, A.; Derriche, Z. (2006) Reduction of clinkerization temperature by using phosphogypsum. J. Hazard. Mat. 137 [1], 129–13. http://dx.doi.org/10.1016/j.jhazmat.2005.12.053 PMid:16533556

14. Elkhadiri, I.; Diouri, A.; Boukhari, A.; Puertas, F.; Vázquez, T. (2003) Obtaining a sulfoaluminate belite cement by industrial waste. Mater. Construcc. 53 [270], 57–69.

15. El-Alfi, E.-S.A. (2004) Sulfoaluminate-belite cement from limestone, phosphogypsum and other waste product. Stud. Technol. 12, 928–935.

16. Karagözöztürk, A.; Oguz, H. (2004) The formation of alite phase by using phosphogypsum and oil shale. Cem. Concr. Res. 34 [11], 2079–2082. http://dx.doi.org/10.1016/j.cemconres.2004.03.013

17. Taher, M.A. (2007) Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Resour. Conservat. Recycl. 52 [1], 28–38. http://dx.doi.org/10.1016/j.resconrec.2007.01.008

18. Coruh, S.; Ergun, N.O. (2010) Use fly ash, phosphogypsum and red mud as a linear material for the disposal of hazardous zinc leach residue waste. J. Hazard. Mat. 173 [1–3], 468–473. http://dx.doi.org/10.1016/j.jhazmat.2009.08.108 PMid:19762146

19. Shen, W.; Zhou, M.; Ma, W.; Hu, J.; Cai, Z. (2009) Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material. J. Hazard. Mat. 164 [1], 99–104. http://dx.doi.org/10.1016/j.jhazmat.2008.07.125

20. Yang, J.; Liu, W.; Zhang, L.; Xiao, B. (2009) Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr. Build. Mat. 23 [2], 687–693. http://dx.doi.org/10.1016/j.conbuildmat.2008.02.011

21. Lea's, (1998) P.C. Hewlett (Ed.), Lea's Chemistry of Cement and Concrete 4th ed. Arnold, London, 83–85.

22. Cruz, I.; Vázquez, T.; Fernandez-Pe-a, O. (1983) Sulfatos en el cemento Portland y su incidencia sobre el falso fraguado: Estado actual del conocimiento. Mater. Construcc. 192, 43–55. http://dx.doi.org/10.3989/mc.1983.v33.i192.967

23. Taylor H.F.W.; Cement Chemistry, 2nd ed., Thomas Telford Publishing, (1997), 84. http://dx.doi.org/10.1680/cc.25929 PMid:8986747

24. Mantell, D.G. (Ed.), PPC: The Manufacure, Properites and Applicatoins of Portland Cements, Cement Additives and Blended Cements 1991, PPC Johannesburg, pp. 13 and 14.

25. Strydom, C.A.; Hudson-Lamb, D.L.; Potgieter, J.H.; Dagg, E. (1995) The thermal dehydration of synthetic gypsum. Thermochim. Acta. 269/270, 631–638. http://dx.doi.org/10.1016/0040-6031(95)02521-9

26. Papageorgiou, A.; Tzouvalas, G.; Tsimas, S.; (2005) Use of inorganic setting retarders in cement industry. Cem. Concr. Compos., 27 [2], 183–189. http://dx.doi.org/10.1016/j.cemconcomp.2004.02.005

27. Charola, A.E.; Puhringer, J.; Steiger, M. (2007) Gypsum: a review of its role in the deterioration of building materials. Environ. Geol. 52 [2], 339–52. http://dx.doi.org/10.1007/s00254-006-0566-9

28. Ballirano, P.; Melis, E. (2009) Thermal behaviour and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel beam X-ray powder diffraction. Phys. Chem. Mineral. 36 [7], 391–402. http://dx.doi.org/10.1007/s00269-008-0285-8

29. Friedman, H. (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 6,183–195. http://dx.doi.org/10.1002/polc.5070060121

30. Flynn, J.H.; Wall, L.A. (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym. Lett. 4 [5],323–328. http://dx.doi.org/10.1002/pol.1966.110040504

31. Ozawa, T. (1965) A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881–1886. http://dx.doi.org/10.1246/bcsj.38.1881

32. Doyle, C.D. (1961) Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5 [15], 285–292. http://dx.doi.org/10.1002/app.1961.070051506

33. Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method, American Society for Testing and Materials (ASTM) E698, 2011.

34. Coats, A.W.; Redfern, J.P. (1964) Kinetic parameters from thermogravimetric data. Nature. 201, 68–6. http://dx.doi.org/10.1038/201068a0

35. Ma, L.; Ning, P.; Zheng, S.; Nui, X.; Zhang, W.; Du, Y. (2010) Reaction mechanism and kinetic analysis of the decomposition of phosphogypsum via solid-state reaction. Ind. Ing. Chem. Res. 49 [8], 3597–3602. http://dx.doi.org/10.1021/ie901950y

36. Strydom, C.A.; Potgieter, J.H. (1999) Dehydration behaviour of a natural gypsum and phosphogypsum during milling. Thermochim. Acta. 332 [1], 89–96. http://dx.doi.org/10.1016/S0040-6031(99)00083-0

37. López, F.A.; Gázquez, M.; Alguacil, F.J.; Bolívar, J.P.; García-Díaz, I.; López-Coto, I. (2011) Microencapsulation of phosphogypsum into a sulfur polymer matrix: Physico-chemical and radiological characterization. J. Hazard. Mat. 192 [1], 234–245. http://dx.doi.org/10.1016/j.jhazmat.2011.05.010

38. Cárdenas-Escudero, C.; Morales-Flórez, V.; Pérez-López, R; Santos, A; Esquivias, L. (2011) Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration. J. Hazard. Mat. 196, 431–435. . http://dx.doi.org/10.1016/j.jhazmat.2011.09.039 PMid:21982535

39. Sebbahi, S.; Lemine, M.; Sahban, F.; Aride, J.; Benarafa, L.; Belkbir, L. (1997) Thermal behaviour of Moroccan phosphogypsum. Thermochim. Acta. 302 [1–2], 69–75. http://dx.doi.org/10.1016/S0040-6031(97)00159-7

40. Manzello, S.L.; Gann, R.G.; Kukuck, S.R.; Prasad, K., Jones, W. (2007) Fire performance of a non-load-bearing steel stud gypsum board wall assembly: experiments and modeling. Fire and Mat. 31, 297–310. http://dx.doi.org/10.1002/fam.939

41. Deutsch, Y.; Nathan, Y.; Sarig, S. (1994) Thermogravimetric evaluation of the kinetics of the gypsum-hemihydrate-soluble anhydrite transition. J. Therm. Anal. Calorim. 42 [1], 159–174. http://dx.doi.org/10.1007/BF02546998

42. Putnis, A.; Winkler, B.; Fernandez-Diaz, L. (1990) In situ IR spectroscopic and thermogravimetric study of the dehydration of gypsum. Mineral Mag. 54, 123–138 http://dx.doi.org/10.1180/minmag.1990.054.374.14

11. Dos Santos, V.A.; Pereira, J.A.F.R.; Dantas, C.C. (1997) Kinetics of thermal dehydration of gypsum ore for obtaining beta hemihydrate in a fluidized bed. Bull Soc. Chim. Belg. 6, 253–60.

44. Chang, H.; Huang, P.J.; Hou, S.C. (1999) Application of thermo-Raman spectroscopy to study dehydration of CaSO4_2H2O and CaSO4_0.5H2O. Mater. Chem. Phys. 58 [1], 12–9. http://dx.doi.org/10.1016/S0254-0584(98)00239-9

45. Prasad, P.S.R.; Chaitanya, V.K.; Prasad, K.S.; Rao, D.N. (2005) Direct formation of the c-CaSO4 phase in dehydration process of gypsum: in situ FTIR study. Am. Mineral. 90 [4], 672–678. http://dx.doi.org/10.2138/am.2005.1742

46. Ball, M.; Norwood, L.S. (1969) Studies in the system calcium sulphate water. Part I. Kinetics of dehydration of calcium sulphate dehydrate. J. Chem. Soc. A. 1633–1637. http://dx.doi.org/10.1039/j19690001633

47. Badens, E.; Llewellyn, P.; Fulconis, J.M.; Jourdan Veesler, C.S.; Boistelle, R. (1998) Study of gypsum dehydration by controlled transformation rate thermal analysis (CRTA). J. Solid State Chem. 139 [1], 37–44. http://dx.doi.org/10.1006/jssc.1998.7797

48. Lou, W.; Guan, B.; Wu, Z. (2011) Dehydration behaviour of FGD gypsum by simultaneous TG and DSC analysis. J. Therm. Anal. Calorim. 104 [2], 661–669. http://dx.doi.org/10.1007/s10973-010-1100-6. http://dx.doi.org/10.1007/s10973-010-1100-6

49. Hudson-Lamb, D.L.; Strydom, C.A.; Potgieter, J.H. (1996) The thermal dehydration of natural gypsum and pure calcium sulphate dehydrate (gypsum). Thermochim. Acta. 282/283 [SPEC. ISS.], 483–492. http://dx.doi.org/10.1016/0040-6031(95)02819-6

50. Elbeyli, I.K.; Piskin, S. (2004) Kinetic study of the thermal dehydration of phosphogypsum. J. Hazard. Mater. 116 [1–2], 111–117. http://dx.doi.org/10.1016/j.jhazmat.2004.08.024 PMid:15561369

51. Kontogeorgos, D.A.; Founti, M.A. (2012) Gypsum board reaction kinetics at elevated temperatures. Thermochim. Acta. 529 [10], 6–13. http://dx.doi.org/10.1016/j.tca.2011.11.014

Publicado

2015-09-30

Cómo citar

López, F. A., Tayibi, H., García-Díaz, I., & Alguacil, F. J. (2015). Estudio cinético de la deshidratación térmica del fosfoyeso. Materiales De Construcción, 65(319), e061. https://doi.org/10.3989/mc.2015.07214

Número

Sección

Artículos