Calizas micríticas devonianas utilizadas en históricamente en la producción de la cal hidráulica de Praga (‘pasta di Praga’): caracterización de las materias primas y procedimiento experimental de calcinación en laboratorio

Autores/as

  • P. Kozlovcev Charles University in Prague
  • R. Přikryl Charles University in Prague

DOI:

https://doi.org/10.3989/mc.2015.06314

Palabras clave:

Caliza, Cal, Silicato bicálcico, Microscopía Electrónica de Barrido (MEB), Difracción de rayos X (DRX)

Resumen


Las calizas micríticas devonianas provenientes de la Cuenca de Praga (área de Barrand, macizo de Bohemia, República checa) que fueron la principal materia prima utilizada para la producción de la cal hidráulica natural calcinada en Praga, presentan un carácter hidráulico desde débil hasta alto. El estudio experimental de laboratorio, ha determinado que el producto calcinado está compuesto de cal viva (CaO) como componente predominante y/o cal hidratada (Ca(OH)2), larnita-belita (silicato bicálcico 2CaO.SiO2) y cuarzo (SiO2) – es decir, fases formadas como resultado de la descomposición de carbonato y cuarzo presentes en las calizas originales. Las proporciones de las nuevas fases formadas dependen de: la composición de la materia prima, temperatura máxima de calcinación (la mayor cantidad de larnita-belita se produce a la temperatura de calcinación de 1200 °C), y la granulometría de las muestras (las muestras con granulometría gruesa presentaron mayor cantidad de belita que las de granulometría fina). La presencia de bajas cantidades de filosilicatos en la materia prima contribuyó a la formación de gehlenita, brownmillerita, wollastonita, calcio aluminoso, y/o spurrita.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Hughes, D.C.; Sugden, D.B.; Jaglin, D.; Mucha, D. (2008) Calcination of Roman cement: A pilot study using cement-stones from Whitby. Constr. Build. Mat. 22, 1446–1455. http://dx.doi.org/10.1016/j.conbuildmat.2007.04.003

2. Juenger, M.C.G.; Winnefeld, F.; Provis, J.L.; Ideker, J.H. (2011) Advances in alternative cementitious binders. Cem. Concr. Res. 41, 1232–1243. http://dx.doi.org/10.1016/j.cemconres.2010.11.012

3. Callebaut, K.; Elsen, J.; Van Balen, K.; Viaene, W. (2001) Nineteenth century hydraulic restoration mortars in the Saint Michael's Church (Leuven, Belgium). Natural hydraulic lime or cement? Cem. Concr. Res. 31, 397–403. http://dx.doi.org/10.1016/S0008-8846(00)00499-3

4. Elert, K.; Rodriguez-Navarro, C.; Sebastian Pardo, E.; Hansen, E.; Cazalla, O. (2002) Lime mortars for the conservation of historic buildings. Stud. Cons. 47, 62–75. http://dx.doi.org/10.1179/sic.2002.47.1.62

5. Van Balen, K.; Papayianni, I.; Van Hees, R.; Binda, L.; Waldum, A. (2005) Introduction to requirements for and functions and properties of repair mortars. Mat. Struct. 38, 781–785. http://dx.doi.org/10.1007/BF02479291

6. Maravelaki-Kalaitzaki, P. (2007) Hydraulic lime mortars with siloxane for waterproofing historic masonry. Cem. Concr. Res. 37, 283–290. http://dx.doi.org/10.1016/j.cemconres.2006.11.007

7. Moropoulou, A.; Polikreti, K. (2009) Principal Component Analysis in monument conservation: Three application examples. J. Cult. Herit. 10, 73–81. http://dx.doi.org/10.1016/j.culher.2008.03.007

8. Bianco, N.; Calia, A.; Denotarpietro, G.; Negro, P. (2013) Laboratory assessment of the performance of new hydraulic mortars for restoration. Procedia Chem. 8, 20–27. http://dx.doi.org/10.1016/j.proche.2013.03.004

9. Gullota, D.; Goidanich, S.; Tedeschi, C.; Nijland, T.G.; Toniolo, L. (2013) Commercial NHL-containing mortars for the preservation of historical architecture. Part 1: Compositional and mechanical characterisation. Constr. Build. Mat. 38, 31–42. http://dx.doi.org/10.1016/j.conbuildmat.2012.08.029

10. Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E.; Anagnostopoulou, S. (2013) Optimization of compatible restoration mortars for the earthquake protection of Hagia Sophia. J. Cult. Herit. 14, Suppl. e147–e152. http://dx.doi.org/10.1016/j.culher.2013.01.008

11. Hughes, D.C.; Jaglin, D.; Kozłowski, R.; Mucha, D. (2009) Roman cements - Belite cements calcined at low temperature. Cem. Concr. Res. 39, 77–89. http://dx.doi.org/10.1016/j.cemconres.2008.11.010

12. Weber, J.; Gadermayr, N.; Kozłowski, R.; Mucha, D.; Hughes, D.; Jaglin, D.; Schwarz, W. (2007) Microstructure and mineral composition of Roman cements produced at defined calcination conditions. Mater. Character. 58, 1217–1228. http://dx.doi.org/10.1016/j.matchar.2007.04.025

13. Kozłowski, R.; Hughes, D.; Weber, J. (2010) Roman cements: key materials of the built heritage of the 19th century. In: Bos¸tenaru, D.; Prˇikryl, R.; Török, Á. (eds.) Materials, Technologies and Practice in Historic Heritage Structures. Springer, Dordrecht New York. 259–277. http://dx.doi.org/10.1007/978-90-481-2684-2_14

14. Giavarini, C.; Ferretti, A.S.; Santarelli, M.L. (2006) Mechanical characteristics of Roman "opus caementicium". In: Kourkoulis, S.K. (ed.) Fracture and Failure of Natural Building Stones. Springer, Berlin. 107–120. http://dx.doi.org/10.1007/978-1-4020-5077-0_7

15. Prikryl, R.; Novotná, M.; Prˇikrylová, J.; Weishauptová, Z.; Št'astná, A. (2011) Physical and mechanical properties of the repaired sandstone ashlars in the facing masonry of the Charles bridge in Prague (Czech Republic) and analytical study for the causes of its rapid decay. Environ. Earth Sci. 63, 1623–1639. http://dx.doi.org/10.1007/s12665-010-0819-5

16. Sabbioni, C.; Zappia, G.; Riontino, C.; Blanco-Varela, M.T.; Aguilera, J.; Puertas, F.; Van Balen, K.; Toumbakari, E.E. (2001) Atmospheric deterioration of ancient and modern hydraulic mortars. Atm. Environ. 35, 539–548. http://dx.doi.org/10.1016/S1352-2310(00)00310-1

17. Oleson, J.P.; Brandon, C.; Cramer, S.M.; Cucitore, R.; Gotti, E.; Hohlfelder, R.L. (2004) The Romacons project: a contribution to the historical and engineering analysis of hydraulic concrete in roman maritime structures. Int. J. Nautic. Archaeol. 33, 199–229. http://dx.doi.org/10.1111/j.1095-9270.2004.00020.x

18. Ingo, G.M.; Fragalà, I.; Bultrini, G.; Caro, T.; Riccucci, C.; Chiozzini, G. (2004) Thermal and microchemical investigation of Phoenician–Punic mortars used for lining cisterns at Tharros (western Sardinia, Italy). Thermochim. Acta 418, 53–60. http://dx.doi.org/10.1016/j.tca.2003.11.053

19. Moropoulou, A.; Bakolas, A.; Anagnostopoulou, S. (2005) Composite materials in ancient structures. Cem. Concr. Comp., 27(2), 295–300. http://dx.doi.org/10.1016/j.cemconcomp.2004.02.018

20. Silva, D.A.; Wenk, H.R.; Monteiro, P.J.M. (2005) Comparative investigation of mortars from Roman Colosseum and cistern. Thermochim. Acta 438, 35–40. http://dx.doi.org/10.1016/j.tca.2005.03.003

21. Velosa, A.L.; Coroado, J.; Veiga, M.R.; Rocha, F. (2007) Characterization of Roman mortars from Conímbriga with respect to their repair. Mater. Character. 58, 1208–1216. http://dx.doi.org/10.1016/j.matchar.2007.06.017

22. Láník, J.; Cikrt, M. (2001) Two thousand years of the Czech lime and cement industries. Svaz vy´robcu• cementu a vápna Cˇech, Moravy a Slezska, Vyzkumny ústav maltovin Praha spol. s r. o., Praha (In Czech).

23. Chlupác, I. (1988) The Devonian of Czechoslovakia and its stratigraphic significance. In: McMillian, N.J.; Embry, A.F.; Glass, D.J. (eds.) Devonian of the World, Canadian Society for Petroleum Geologists, Memoirs, 14. 481–497.

24. Chlupác, I.; Havlícek, V.; Kríž, J.; Kukal, Z.; Štorch, P. (1998) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague, 183.

25. Havlícek, V. (1981) Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician - Middle Devonian, Barrandian, Central Bohemia). Sbor. geol. Ved, rada G, 7–48.

26. Chlupác, I.; Brzobohaty, R.; Kovanda, J.; Stráník, Z. (2002) Geologická minulost Cˇeské republiky. Academia, Prague (in Czech).

27. Melichar, R. (2004) Tectonics of the Prague Synform: a hundred years of scientific discussion. Krystalinikum 30, 167–187.

28. Röhlich, P. (2007) Structure of the Prague Basin: The deformation diversity and its causes (the Czech Republic). Bull. Geosci. 82, 175–182. http://dx.doi.org/10.3140/bull.geosci.2007.02.175

29. Cháb, J. (1993) General problems of the TB (Teplá-Barrandian) Precambrian, Bohemian Massif, the Czech Republic. Vestník CˇGÚ 68, 1–6.

30. Glasmacher, U.A.; Mann, U.; Wagner, G.A. (2002) Thermotectonic evolution of the Barrandian, Czech Republic, as revealed by apatite fission-track analysis. Tectonophysics 359, 381–402. http://dx.doi.org/10.1016/S0040-1951(02)00538-3

31. Kríž, J. (1999) Geological monuments of Prague. Proterozoic and Lower Paleozoic. Czech Geological Survey, Prague, 278. (In Czech with English summary).

32. Chlupác, I.; Kukal, Z. (1986) Reflexion of possible global Devonian events in the Barrandian area. C.S.S.R. Lecture Notes in Earth Sciences 8, 171–179.

33. Dunham, R.J. (1962) Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (ed.) Classification of carbonate rocks. AAPG, Memoir 1, 108–121.

34. Prikryl, R.; Št'astná, A. (2010) Contribution of clayey-calcareous silicite to the mechanical properties of structural mortared rubble masonry of medieval Charles Bridge in Prague (Czech Republic). Eng. Geol. 115, 257–267. http://dx.doi.org/10.1016/j.enggeo.2010.06.009

35. Zeno, F. (1770) Beschreibung des bei Prag von dem Wissehrader Tore gelegenen Kalksteinbruches, mit seinen Seeversteinerungen und anderen Fossilien. N. physik. Belustigun. 2, 362–420.

36. Kirschenbaum, H. (1983) The classical chemical analysis of silicate rocks – the old and the new. Geological Survey Bulletin 1547, United States Government Printing Office, Washington.

37. Rosen, O.M.; Abbyasov, A.A.; Migdisov, A.A.; Yaroshevskii, A.A. (2000) MINLITH–A Program to Calculate the Normative Mineralogy of Sedimentary Rocks: The Reliability of Results Obtained for Deposits of Old Platforms. Geochem. Int. 38, 388–400.

38. Rosen, O.M.; Abbyasov, A.A.; Tipper, J.C. (2004) MINLITH–an experience-based algorithm for estimating the likely mineralogical compositions of sedimentary rocks from bulk chemical analyses. Comp. Geosci. 30, 647–661. http://dx.doi.org/10.1016/j.cageo.2004.03.011

39. Spalding, F.P. (1898) Hydraulic cement. Its properties, testing, and use. 1st ed., John Wiley & Sons, New York. PMid:17738760

40. Eckel, E.C. (1928) Cements, Limes and Plasters: Their Materials, Manufacture, and Properties. 3rd ed., John Wiley & Sons, New York.

41. Folk, R.L. (1962) Spectral subdivision of limestone types. In: Ham W.E. (ed.) Classification of carbonate rocks. AAPG, Memoir 1, 62–84.

42. Konta, J. (1973) Quantitative system of residual rocks, sediments and volcanoclasic deposits. Universita Karlova, Praha. (In Czech).

43. Cowper, A.D. (1927) Lime and Lime Mortars. Building Research Station, HM Stationary Office, London.

44. Mu.ller, Ch.J. (2005) Pozzolanic activity of natural clay minerals with respect to environmental geotechnics. Unpublished manuscript of Ph.D. thesis, Swiss Federal Institute of Technology, Zu.rich.

45. Varas, M.J.; Alvarez de Buergo, M.; Fort, R. (2005) Natural cement as the precursor of Portland cement: Methodology for its identification. Cem. Concr. Res. 35, 2055–2065. http://dx.doi.org/10.1016/j.cemconres.2004.10.045

46. Elsen, J.; Mertens, G.; Van Balen, K. (2011) Raw materials used in ancient mortars from the Cathedral of Notre-Dame in Tournai (Belgium). Eur. J. Mineral. 23, 871–882. http://dx.doi.org/10.1127/0935-1221/2011/0023-2139

47. Bolio-Arceo, H.; Glasser, F.P. (1990) Formation of spurite, Ca5(SiO4)2CO3. Cem. Concr. Res. 20, 301–307. http://dx.doi.org/10.1016/0008-8846(90)90084-B

48. Glasser, F.P. (1973) The formation and thermal stability of spurite, Ca5(SiO4)2CO3. Cem. Concr. Res. 3, 23–28. http://dx.doi.org/10.1016/0008-8846(73)90058-6

Publicado

2015-09-30

Cómo citar

Kozlovcev, P., & Přikryl, R. (2015). Calizas micríticas devonianas utilizadas en históricamente en la producción de la cal hidráulica de Praga (‘pasta di Praga’): caracterización de las materias primas y procedimiento experimental de calcinación en laboratorio. Materiales De Construcción, 65(319), e060. https://doi.org/10.3989/mc.2015.06314

Número

Sección

Artículos