Influencia del mucílago de cactus y extracto de algas pardas marinas en la resistencia a compresión y durabilidad del hormigón

Autores/as

  • E. F. Hernández Instituto Politécnico Nacional/CIIDIR Unidad Oaxaca
  • P. F. de J. Cano-Barrita Instituto Politécnico Nacional/CIIDIR Unidad Oaxaca
  • A. A. Torres-Acosta Universidad Marista de Querétaro

DOI:

https://doi.org/10.3989/mc.2016.07514

Palabras clave:

Hormigón, Aditivos orgánicos, Resistencia a la compresión, Cloruros, Durabilidad

Resumen


Este trabajo presenta el comportamiento mecánico y de durabilidad de concretos con relaciones agua/cemento de 0.30 y 0.60, conteniendo soluciones de mucílago de nopal y extracto de algas marinas cafés (0.5 °Brix de concentración). Especímenes cilíndricos (100 mm x 200 mm) fueron elaborados y curados en húmedo por 0 y 28 días. Se evaluó la resistencia a la compresión, permeabilidad rápida y difusión de cloruros a los 60 y 120 días de edad. Adicionalmente, se realizaron pruebas de carbonatación acelerada en especímenes con 180 días de edad, expuestos a 23 °C, 60% HR y 4.4% de CO2 por 120 días. Los resultados de resistencia a la compresión muestran que únicamente una mezcla de concreto con adición orgánica incrementó su resistencia con respecto al control. Con respecto a la permeabilidad rápida a cloruros, difusión de cloruros y carbonatación, los resultados indican que la durabilidad de los concretos que contenían adiciones orgánicas fue mejorada con respecto al control.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Mehta, P.K. (1997) Durability- Critical issues for the future. Concrete International. 19 [7], 27–33.

2. Glasser, F.P.; Marchand, J.; and Samson, E. (2008) Durability of concrete- degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 38 [2], 226–246. http://dx.doi.org/10.1016/j.cemconres.2007.09.015

3. Neville, A. (1995) Chloride attack of reinforced concrete: an overview. Mater Struct. 28 [2], 63–70. http://dx.doi.org/10.1007/BF02473172

4. Mehta, P.K.; Gerwick, B.C. (1982) Cracking-corrosion interaction in concrete exposed to marine environment. Concrete International. 4 [10], 45–51.

5. Neville, A.M. (1995) Properties of concrete, fourth edition, Pearson Education Limited, England.

6. Aïtcin, P.C. (2003) The durability characteristics of high performance concrete: a review. Cem. Concr. Comp. 25 [4–5], 409–420. http://dx.doi.org/10.1016/S0958-9465(02)00081-1

7. Mehta, P.K. (1999) Advancements in Concrete Technology. Concrete International. 21 [6], 69–76.

8. Ann, Y.K.; Jung, H.S.; Kim, H.S; Kim, S.S.; Moon, H.Y. (2006) Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete. Cem. Concr. Res. 36 [3], 530–535. http://dx.doi.org/10.1016/j.cemconres.2005.09.003

9. Wu, X.; Chou, N.; Lupher, D.; Davis, L.C. (1998) Benzotriazoles: Toxicity and Degradation. Proceedings, The 13th Annual conference on hazardous waste research, Snowbird, Utah. Project no. 94–27, 374–382.

10. Cárdenas, A.; Arguelles, W.M.; Goycoolea F.M. (1998) On possible role of Opuntia Ficus Indica mucilage in lime mortar performance in the protection of historical buildings. J. Prof. Assoc. Cactus. 3, 1–8, Online at http://jpacd.org/downloads/Vol3/RAC_4.pdf.

11. Chandra, S.; Eklund, L.; Villarreal R.R. (1998) Use of cactus in mortars and concrete. Cement and Concrete. 28 [1], 41–51. http://dx.doi.org/10.1016/S0008-8846(97)00254-8

12. Hernandez-Zaragoza, J.B.; Caballero-Badillo, C.E.; Rosas- Juarez, A.; Lopez-Lara, T.; Hinojosa-Torres, J.; Castano, V.M. (2007) Modification of Portland cement mortars with cactus gum. Chemistry and Chemical Technology. 1 [3], 175–177.

13. Ramírez-Arellanes, S.; Cano-Barrita, P.F. de J.; Julián- Caballero, F.; and Gómez-Ya-ez, C. (2012) Concrete durability properties and microstructural analysis of cement paste with nopal cactus mucilage as a natural additive. Mater. Construcc. 62 [302], 327–341.

14. Leon-Martinez F.; Cano-Barrita P.F.J.; Lagunez-Rivera L.; Medina-Torres L. (2014) Study of nopal mucilage and marine brown algae extract as viscosity enhancing admixtures for cement based materials. Construct. Build. Mat. 53 [2], 190–202. http://dx.doi.org/10.1016/j.conbuildmat.2013.11.068

15. Torres-Acosta A.A.; Martínez-Molina W.; Alonso-Guzmán E.M. (2012) State of the Art on Cactus Additions in Alkaline Media as Corrosion Inhibitors. International Journal of Corrosion. Article ID 646142, 9 pages. PMCid:PMC3428005

16. Fischer, F.G.; Dorfel, H. (1955) Polyuronic acids in brown algae. Hoppe-Seyler's Zeitschrift fur physiologische Chemie. 302 [4–6], 186–203. http://dx.doi.org/10.1515/bchm2.1955.302.1-2.186

17. Haug, A.; Smidsrød, O. (1965) Fractionation of alginates by precipitation with calcium and magnesium ions. Acta Chem. Scand. 19, 1221–1226. http://dx.doi.org/10.3891/acta.chem.scand.19-1221

18. Reyes-Tisnado, R.; Hernández-Carmona, G.; López- Gutiérrez, F.; Vernon-Carter, E.J.; Castro-Moyoroqui, P. (2004) Sodium and Potassium alginates extracted from Macrocystis Pyrifera algae for use in dental impression materials. Cienc. Mar. 30 [01B], 189–199. Online at http://www.redalyc.org/articulo.oa?id=48003004.

19. Pathak, T.S.; Yun, J-H.; Lee, J.; Paeng, K-J. (2010) Effect of calcium ion (cross-linker) concentration on porosity, surface morphology and thermal behavior of calcium alginates prepared from algae (Undaria pinnatífida). Carbohyd. Polym. 81 [3], 633–639. http://dx.doi.org/10.1016/j.carbpol.2010.03.025

20. Galán-Marín, C.; Rivera-Gómez, C.; Petric, J. (2010) Claybased composite stabilized with natural polymer and fibre. Construct. Build. Mat. 24 [8], 1462–1468. http://dx.doi.org/10.1016/j.conbuildmat.2010.01.008

21. Friedemann, K.; Stallmach, F.; Karger, J. (2006) NMR diffusion and relaxation studies during cement hydration-A non-destructive approach for clarification of mechanism of internal post curing of cementitious materials. Cem. Concr. Res. 36 [5], 817–826. http://dx.doi.org/10.1016/j.cemconres.2005.12.007

22. American Society for Testing Materials (ASTM) (2003) ASTM Standard C33-03: Standard Specification for Concrete Aggregates, West Conshohocken, PA, 11.

23. American Society for Testing Materials (ASTM) (2001) ASTM Standard C70-01: Standard Test Method for Surface Moisture in Fine Aggregate, West Conshohocken, PA, 3.

24. American Society for Testing Materials (ASTM) (2001) ASTM Standard C127-01: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate, West Conshohocken, PA, 6.

25. American Society for Testing Materials (ASTM) (2001) ASTM Standard C128-01: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, West Conshohocken, PA, 6.

26. American Society for Testing Materials (ASTM) (2004) ASTM Standard C566-04: Standard Test Method for Total Evaporable Moisture content of Aggregate by Drying, West Conshohocken, PA, 3.

27. American Society for Testing Materials (ASTM) (2003) ASTM Standard C29-03: Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate, West Conshohocken, PA, 4.

28. Medina-Torres, L.; Brito-De La Fuente, E.; Torrestiana-Sanchez, B.; and Katthain, R. (2000) Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocolloids. 14 [5], 417–424 http://dx.doi.org/10.1016/S0268-005X(00)00015-1

29. Sáenz, C.; Sepúlveda, E. (1993) Alternativas de industrialización de la tuna (Opuntia ficus-indica). Alimentos. 18 [3], 29–32.

30. Sáenz, C.; Sepúlveda, E.; Matsuhiro, B. (2004) Opuntia spp mucilage's: a functional component with industrial perspectives. J. Arid. Environ. 57 [3], 275–290. http://dx.doi.org/10.1016/S0140-1963(03)00106-X

31. Abrajan, M.A. (2008) Efecto del método de extracción en las características químicas y físicas del mucílago de nopal (Opuntia ficus-indica) y estudio de su aplicación como recubrimiento comestible. PhD Thesis, Spain: Universidad Politécnica de Valencia, 1–244.

32. McGarvie, D.; Parolis, H. (1979) The mucilage of Opuntia ficus indica. Carbohyd. Res. 69 [1], 171–179. http://dx.doi.org/10.1016/S0008-6215(00)85762-6

33. Trachtenberg, S.H.; Mayer, A. (1981) Calcium oxalate crystals in Opuntia ficus indica (L.) Mill: development and relation to mucilage cells - a stereological analysis. Protoplasma 109 [3–4], 271–283. http://dx.doi.org/10.1007/BF01287447

34. Chhabra, R.P.; Richardson, J.F. (2008) Non-Newtonian flow and applied rheology. Second edition, Butterworth Heinemann, 536.

35. American Society for Testing Materials (ASTM) (1999) ASTM Standard C305-99: Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, West Conshohocken, PA, 3.

36. Fagerlund, G. (2009) Chemically bound water as measure of degree of hydration- Methods and potential errors. Report TVBM-3150, 31.

37. Meiboom, S.; Gill, D. (1958) Modified spin–echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691. http://dx.doi.org/10.1063/1.1716296

38. Aïtcin, P.C.; Mehta, K. (1990) Principles underlying production of high-performance concrete. The American Society for testing and materials, cement, concrete and aggregates. 12 [2], 70–78.

39. ACI Committee 211. (1991) Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211-1-91). American Concrete Institute, Farmington Hills, MI, 38.

40. American Society for Testing Materials (ASTM) (2003) ASTM Standard C39-0: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, West Conshohocken, PA, 5.

41. Hall, C. (1989) Water Sorptivity of Mortars and Concretes: A Review. Mag. Concrete Res. 41 [147], 51–61. http://dx.doi.org/10.1680/macr.1989.41.147.51

42. American Society for Testing Materials (ASTM) (1997) ASTM Standard C642-97: Standard Test Method for Density, Absorption, and Voids in Hardened concrete, West Conshohocken, PA, 3.

43. American Society for Testing Materials (ASTM) (1997) ASTM Standard C1202-97: Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, West Conshohocken, PA, 6.

44. NT BUILD 443, NORDTEST METHOD. (1995) Concrete, hardened: accelerated chloride penetration. NORDTEST, Tekniikantie 12, FIN-02150 ESPOO, FINLAND, Approved 1995–11, 5.

45. Crank, J. (1975) The mathematics of diffusion, second edition, Oxford University Press, Oxford.

46. Bentz, D.P.; Snyder, K.A.; Cass, L.C.; Peltz, M.A. (2008) Doubling the Service Life of Concrete. I: Reducing Ion Mobility Using Nanoscale Viscosity Modifiers. Cement and Concrete Composites. 30, 674–678. http://dx.doi.org/10.1016/j.cemconcomp.2008.05.001

47. Bentz, D.P.; Peltz, M.A.; Snyder, K.A.; Davis, J.M. (2009) VERDiCT: Viscosity Enhancers Reducing Diffusion in Concrete Technology. Concrete International. 31 [1], 31–36. Online at: http://concrete.nist.gov/~bentz/CI3101Bentzreadonly.pdf.

48. Leemann, A.; Lothenbach, B.; Thalmann, C. (2011) Influence of superplasticizers on pore solution composition and on expansion of concrete due to alkali-silica reaction. Construct. Buid. Mat. 25, 344–350. http://dx.doi.org/10.1016/j.conbuildmat.2010.06.019

49. Peschard, A.; Govin, A.; Grosseau, P.; Guilhot, B.; Guyonnet, R. (2004) Effect of polysaccharides on the hydration of cement paste at early ages. Cem. Concr. Res. 34, 2153–2158. http://dx.doi.org/10.1016/j.cemconres.2004.04.001

50. Mehta, P.K.; and Monteiro, P.J.M. (2006) Concrete - Microstructure, Properties, Materials. Third Edition, McGraw-Hill Companies, Inc. 684.

51. Coates, G.R.; Xiao, L.; Prammer, M.G. (1999) NMR Logging Principles Applications. Halliburton Energy Service, 234.

52. Trachtenberg S.; Mayer M. (1982) Biophysical properties of Opuntia ficus-indica mucilage. Phytochemistry. 21 [12], 2835–2843. http://dx.doi.org/10.1016/0031-9422(80)85052-7

53. De Larrard F.; Aitcin P.C. (1993) Apparent strength retrogression of silica-fume concrete. ACI Materials Journal. 90 [6], 581–585.

54. Hughes, D.C. (1985) Pore Structure and Permeability of Hardened Cement Paste. Magazine of Concrete Research. 37 [133], 227–233. http://dx.doi.org/10.1680/macr.1985.37.133.227

55. Caballero, J.F. (2008) Secado, absorción de agua y difusión de cloruros en concreto conteniendo extracto de nopal. MSc. Thesis, Oaxaca, México: CIIDIR IPN, 1–116.

56. Poinot, T.; Govin, A.; Grosseau, P. (2014) Influence of hydroxypropylguars on rheological behavior of cement-based mortars. Cem. Concr. Res. 58, 161–168. http://dx.doi.org/10.1016/j.cemconres.2014.01.020

57. Ventolà, L.; Vendrell, M.; Giraldez, P.; Merino, L. (2011) Traditional organic admixtures improve lime mortars: New old materials for restoration and building natural stone fabrics. Construct. Build. Mat. 25 [8], 3313–3318. http://dx.doi.org/10.1016/j.conbuildmat.2011.03.020

58. Sisomphon, K.; Franke, L. (2007) Carbonation rates of concretes containing high volume of pozzolanic materials. Cem. Concr. Res. 37 [12], 1647–1653. http://dx.doi.org/10.1016/j.cemconres.2007.08.014

Publicado

2016-03-30

Cómo citar

Hernández, E. F., Cano-Barrita, P. F. de J., & Torres-Acosta, A. A. (2016). Influencia del mucílago de cactus y extracto de algas pardas marinas en la resistencia a compresión y durabilidad del hormigón. Materiales De Construcción, 66(321), e074. https://doi.org/10.3989/mc.2016.07514

Número

Sección

Artículos