Uso de hormigón reforzado con fibras de coco para construcciones sismo resistentes
DOI:
https://doi.org/10.3989/mc.2016.01015Palabras clave:
Refuerzo con fibras, Hormigón, Composite, Aceleración, Propiedades mecánicasResumen
En las zonas rurales de los países en desarrollo, entre las características principales que deben reunir las viviendas es que sean tanto económicas como sismoresistentes, ya que en estas zonas la pérdida de vidas humanas debido a los terremotos es aun elevada. A fin de hallar una solución que cumple con estos requisitos de manera técnica y económicamente efectiva, se ha investigado un nuevo concepto constructivo: un murete de bloques conjugados con movilidad en el interfaz y reforzado con cuerda. Este novedoso bloque conjugable está realizado en hormigón reforzado con fibra de coco (CFRC), elegida por su alta tenacidad, la mayor de entre las fibras naturales. El artículo describe el comportamiento dentro del plano del murete conjugado frente a las cargas sísmicas. La respuesta de esta estructura se ha medido en función de la aceleración inducida, el levantamiento de los bloques, el desplazamiento relativo máximo y la tensión de las cuerdas, determinándose que ni los bloques ni las cuerdas han resultado dañados por las cargas sísmicas aplicadas. La respuesta del murete se describe en detalle, relacionando las propiedades de los materiales con su comportamiento estructural.
Descargas
Citas
1. Munshi, J. (2009) A low-cost housing option in seismic regions. In: Proceedings of the structures songress - don't sess with structural engineers: expanding our role, ASCE. 2741–2750. http://dx.doi.org/10.1061/41031(341)300
2. Aziz, M.A.; Paramasivam, P.; Lee, S.L. (1984) Concrete reinforced with natural fibres. New Reinf. Concr. 1, 106–140.
3. Baruah, P; Talukdar, S. (2007) A comparative study of compressive, flexural, tensile and shear strength of concrete with fibres of different origins. Indian Concr. J. 81 [7], 17–24. http://www.icjonline.com/main_july2007.htm.
4. Sen, T.; Reddy, H.N.J. (2011) Application of Sisal, Coir and Jute Natural Composites in Structural Upgradation. Int. J. Innov. Manage. Technol. 2 [3], 186–191. http://ijimt.org/papers/129-M533.pdf.
5. Asasutjarit C.; Hirunlabh J.; Khedari J.; Charoenvai S.; Zeghmati B.; Shin, U.C. (2007) Development of coconut coir-based lightweight cement board. Constr. Build. Mater. 21 [2], 277–288. http://dx.doi.org/10.1016/j.conbuildmat.2005.08.028
6. Paramasivam, P.; Nathan, G.K.; Das-Gupta, N.C. (1984) Coconut fibre reinforced corrugated slabs. Int. J. Cem. Compos. Lightweight Concr. 6 [1], 19–27. http://dx.doi.org/10.1016/0262-5075(84)90056-3
7. Ramakrishna, G.; Sundararajan, T. (2005) Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study. Cem. Concr. Comp. 27 [5], 547–553. http://dx.doi.org/10.1016/j.cemconcomp.2004.09.006
8. Ramakrishna, G.; Sundararajan, T. (2005) Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cem. Concr. Comp. 27 [5], 575–82. http://dx.doi.org/10.1016/j.cemconcomp.2004.09.008
9. Gunasekaran, K.; Kumar, P.S.; Lakshmipathy, M. (2011) Mechanical and bond properties of coconut shell concrete. Constr. Build. Mater. 25 [1], 92–98. http://dx.doi.org/10.1016/j.conbuildmat.2010.06.053
10. Munawar, S.S.; Umemura, K.; Kawai, S. (2007) Characterization of the morphological, physical, and mechanical properties of seven non-wood plant fibre bundles. J. Wood Sci. 53 [2], 108–113. http://dx.doi.org/10.1007/s10086-006-0836-x
11. Satyanarayana, K.G.; Sukumaran, K.; Mukherjee, P.S.; Pavithran, C.; Pillai, S.G.K. (1990) Natural fibre-polymer composites. Cem. Concr. Comp. 12 [2], 117–136. http://dx.doi.org/10.1016/0958-9465(90)90049-4
12. Saravanan, R.; Sivaraja, M. (2012) Durability studies on coir reinforced bio-composite concrete panel. Eur. J. Sci. Res. 81 [2], 220–30. http://www.linknovate.com/publication/durability-studies-on-coir-reinforced-bio-composite-concretepanel-2322913/.
13. Mani, P.; Satyanarayana, K.G. (1990) Effects of the surface treatments of lignocellulosic fibres on their debonding stress. J. Adhes. Sci. Technol. 4 [1], 17–24. http://dx.doi.org/10.1163/156856190X00036
14. John, V.M.; Cincotto, C.; Agopyan, V.; Oliveira, C.T.A. (2005) Durability of slag mortar reinforced with coconut fibre. Cem. Conc. Compos. 27 [5], 565–74. http://dx.doi.org/10.1016/j.cemconcomp.2004.09.007
15. Thanoon, W.A.; Jaafar, M.S.; Noorzaei, J.; Kadir, M.R.A.; Fares, S. (2007) Structural behaviour of mortar-less interlocking masonry system under eccentric compressive loads. Adv. Struct. Eng. 10 [1], 11–24. http://dx.doi.org/10.1260/136943307780150832
16. Turek, M.; Ventura, C.E.; Kuan S. (2007) In-plane shake table testing of GFRP-strengthened concrete masonry walls. Earthq. Spectra. 23 [1], 223–237. http://dx.doi.org/10.1193/1.2429564
17. Anand, K.B.; Ramamurthy, K. (2000) Development and performance evaluation of interlocking-block masonry. J. Arch. Engg. 6 [2], 45–51. http://dx.doi.org/10.1061/(ASCE)1076-0431(2000)6:2(45)
18. Anand, K.B.; Ramamurthy, K. (2003) Laboratory-based productivity study on alternative masonry systems. J. Constr. Engg. Manage. 129 [3], 237–242. http://dx.doi.org/10.1061/(ASCE)0733-9364(2003)129:3(237)
19. Jafaar, M.S.; Thanoon, W.A.; Najm, A.M.S.; Abdulkadir, M.R.; Ali, A.B.A. (2006) Strength correlation between individual block, prism, and basic wall panel for load bearing interlocking mortarless hollow block masonry. Constr. Build. Mater. 20, 492–98. http://dx.doi.org/10.1016/j.conbuildmat.2005.01.046
20. Nazar, M.E.; Sinha, S.N. (2007) Fatigue Behaviour of interlocking grouted stabilised mud-fly ash brick masonry. Int. J. Fatigue. 29, 953–61. http://dx.doi.org/10.1016/j.ijfatigue.2006.07.018
21. Dedek, K.P.; Claude, M.A.M.; Kumaran, G.S. (2012) Feasibility study of low cost concrete products as an appropriate: alternative construction material in the Rwandan construction industry. Adv. Res. Mater. 367, 55–62. http://dx.doi.org/10.4028/www.scientific.net/AMR.367.55
22. Smith, E. (2010) Interlocking stabilised soil blocks: Appropriate technology that doesn't cost the earth. The Structural Engineer. 88 [15/16], 25–29.
23. Uygunoglu, T.; Topcu, I.B.; Gencel, O.; Brostow, W. (2012) The effect of fly ash content and types of aggregates on the properties of pre-fabricated concrete interlocking blocks (PCIBs). Constr. Build. Mater. 30, 180–187. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.020
24. Thanoon, W.A.; Jaafar, M.S.; Kadir, M.R.A.; Ali, A.B.A.; Trikha, D.N.; Najm, A.M.S. (2004) Development of an innovative interlocking load bearing hollow block system in Malaysia. Constr. Build. Mater. 18, 445–454. http://dx.doi.org/10.1016/j.conbuildmat.2004.03.013
25. Ali, M.; Liu, A.; Sou, H.; Chouw, N. (2012) Mechanical and dynamic properties of coconut fibre reinforced concrete. Constr. Build. Mater. 30, 814–825. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.068
26. NZS 3112: Part 2. Tests relating to the determination of strength of concrete. 1986.
27. Libre, N.A.; Shekarchi, M.; Mahoutian, M.; Soroushian, P. (2011) Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Constr. Build. Mater. 25 [5], 2458–64. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.058
28. Richardson, A.E.; Conventry, K.; Landless, L. (2010) Synthetic and steel fibres in concrete with regard to equal toughness. Struct.l Surv. 28 [5], 355–369. http://dx.doi.org/10.1108/02630801011089155
29. Ali, M.; Chouw, N. (2013) Experimental investigations on coconut-fibre rope tensile strength and pullout from coconut fibre reinforced concrete. Constr. Build. Mater. 41, 681–90. http://dx.doi.org/10.1016/j.conbuildmat.2012.12.052
30. Ali, M.; Gultom, R.J.; Chouw, N. (2012) Capacity of innovative interlocking blocks under monotonic loading. Constr. Build. Mater. 37, 812–21. http://dx.doi.org/10.1016/j.conbuildmat.2012.08.002
31. Chan, R.; Bindiganavile, V. (2010) Toughness of fibre reinforced hydraulic lime mortar. Part 1, quasi-static response. Mater. Struct. 43, 1435–1444. http://dx.doi.org/10.1617/s11527-010-9598-4
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.