Composite cement mortars based on marine sediments and oyster shell powder

Authors

  • H. Ez-zaki Faculté des Sciences Université Mohammed V
  • A. Diouri Faculté des Sciences Université Mohammed V
  • S. Kamali-Bernard Institut National des Sciences Appliquées, Université Européenne de Bretagne
  • O. Sassi Ecole Normale Supérieure, Université Mohammed V

DOI:

https://doi.org/10.3989/mc.2016.01915

Keywords:

Characterization, Hydration, Calorimetry, Mortar, Durability

Abstract


Additions of dredged marine sediments and oyster shell powder (OS) as cement substitute materials in mortars are examined by several techniques. The sediments have high water and chloride contents and calcite, quartz, illite and kaolinite as principal minerals. The OS powders are entirely composed of calcium carbonate and traces of other impurities. Four mixtures of treated sediments and OS powders at 650 °C and 850 °C are added to Portland cement at 8%, 16% and 33% by weight. The hydration of composite pastes is followed by calorimetric tests, the porosity accessible to water, the bulk density, the permeability to gas, the compressive strength and the accelerated carbonation resistance are measured. In general, the increase of addition amounts reduced the performance of mortars. However, a reduction of gas permeability was observed when the addition was up to 33%. Around 16% of addition, the compressive strength and carbonation resistance were improved.

Downloads

Download data is not yet available.

References

1. Lafhaj, Z.; Samara, M.; Boucard, L.; Agostini F.; Skoczylas, F. (2006) Polluted River Sediments: Characterization, Treatment and Valorization, Proceedings of the First Euro Mediterranean in Advances on Geomaterials and Structures, Hammamet, Tunisia.

2. Kribi, S.; Nzihou, A.; Sharrock, P.; Depelsenaire, G. (2005) Stabilization of Heavy Metals from Sediments Tailoring of Residue Properties, Proceedings of the Third International Conference on Remediation of Contaminated Sediments, Battelle Press, New Orleans, Louisiana, USA, January, ISBN: 1-57477-150-7.

3. Agostini, F.; Skoczylas, F.; Lafhaj, Z. (2007) About a possible valorisation in cementitious materials of polluted sediments after treatment. Cem. Concr. Compos. 29 [4], 270–278. http://dx.doi.org/10.1016/j.cemconcomp.2006.11.012

4. Lafhaj, Z.; Samara, M.; Agostini, F.; Boucard, L.; Skoczylas F.; Depelsenaire G. (2008) Polluted river sediments from the North region of France: Treatment with Novosol® process and valorization in clay bricks. Constr. Build. Mater. 22 [5], 755–762. http://dx.doi.org/10.1016/j.conbuildmat.2007.01.023

5. Kamali, S.; Bernard, F.; Abriak, NE.; Degrugilliers, P. (2008) Marine dredged sediments as new materials resource for road construction. Waste Management. 28 [5], 919–928. http://dx.doi.org/10.1016/j.wasman.2007.03.027 PMid:17826971

6. Agostini, F.; Davy, C.A.; Skoczylas, F.; Dubois, Th. (2010) Effect of microstructure and curing conditions upon the performance of a mortar added with Treated Sediment Aggregates (TSA). Cem. Concr. Res. 40 [11], 1609–1619. http://dx.doi.org/10.1016/j.cemconres.2010.07.003

7. Aouad, G.; Laboudigue, A.; Gineys, N.; Abriak, N.E. (2012) Dredged sediments used as novel supply of raw material to produce Portland cement clinker. Cem. Concr. Compos. 34 [6], 788–793. http://dx.doi.org/10.1016/j.cemconcomp.2012.02.008

8. Yoon, GL.; Kim, BT.; Kim, BO.; Han, SH. (2003) Chemical– mechanical characteristics of crushed oyster-shell. Waste Manage. 23 [9], 825–834. http://dx.doi.org/10.1016/S0956-053X(02)00159-9

9. Wang, HY.; Kuo, WT.; Lin CC.; Chen PY. (2013) Study of the material properties of fly ash added to oyster cement mortar. Constr. Build. Mater. 41, 532–537. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.021

10. Yang, EI.; Yi ST.; Leem, YM. (2005) Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties. Cem. Concr. Res. 35 [11], 2175–2182. http://dx.doi.org/10.1016/j.cemconres.2005.03.016

11. Yang, EI.; Kim, MY.; Park, HG.; Yi S.T. (2010) Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete. Constr. Build. Mater. 24 [5], 758–765. http://dx.doi.org/10.1016/j.conbuildmat.2009.10.032

12. Dang, T.A. (2011) Valorisation durable des sédiments marins Bretons comme matériaux de construction, Thèse de Doctorat–INSA Rennes.

13. Dang, T.A.; Kamali, S.; Prince, W.A. (2013) Design of new blended cement based on marine dredged sediment. Constr. Build. Mater. 41, 602–611. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.088

14. EN 196-1, (2006) European standard, methods of testing cement–Part 1: Determination of strength. NF EN 196-1.

15. AFREM Group, « Les résultats des essais croises AFREM pour la determination de la masse volumique apparente et de la porosité accessible à l'eau des bétons ».

16. Care, S.; Derkx, F. (2011) Determination of relevant parameters influencing gas permeability of mortars. Constr. Build. Mater. 25 [3], 1248–1256. http://dx.doi.org/10.1016/j.conbuildmat.2010.09.028

17. Hamami, A.A.; Turcry, Ph.; Aït-Mokhtar, A. (2012) Influence of mix proportions on microstructure and gas permeability of cement pastes and mortars. Cem. Concr. Res. 42 [2], 490–498. http://dx.doi.org/10.1016/j.cemconres.2011.11.019

18. Lagier, F.; E. Kurtis, K. (2007) Influence of Portland cement composition on early age reactions with metakaolin. Cem. Concr. Res. 37, [10] 1411–1417. http://dx.doi.org/10.1016/j.cemconres.2007.07.002

19. Rahhal, V.; Cabrera, O.; Talero, R.; Delgado, A. (2007) Calorimetry of portland cement with silica fume and gypsum additions. J. Therm. Anal. Calor. 87, 331–336. http://dx.doi.org/10.1007/s10973-005-7324-1

20. Rahhal, V.; Talero, R. (2009) Calorimetry of Portland cement with silica fume, diatomite and quartz additions. Constr. Build. Mater. 23 [11], 3367–3374. http://dx.doi.org/10.1016/j.conbuildmat.2009.06.003

21. Rahhal, V.; Talero, R. (2008) Calorimetry of Portland cement with metakaolins, quartz and gypsum additions. J. Therm. Anal. Calor. 91, 825–834. http://dx.doi.org/10.1007/s10973-006-8250-6

22. Christensen, A.N.; Jensen, T.R.; Hanson, J.C. (2004) Formation of ettringite, Ca6Al2(SO4)3(OH)12.26H2O, AFt, and monosulfate, Ca4Al2O6(SO4) .14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide–calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction. Journal of Solid State Chemistry. 177 [6], 1944–1951. http://dx.doi.org/10.1016/j.jssc.2003.12.030

23. Ez-zaki, H.; Diouri, A.; Kamali, B.S.; Dang, T.A.; Sassi, O.; Bernard, F. (2013) Properties and hydration behavior of blended clinker and Portland-sediment cement pastes. Chemistry and Materials Research 5, 121–127.

24. Bentz, D.P.; Haecker, C.J. (1999) An argument for using coarse cements in high-performance concretes. Cem. Concr. Res. 29 [4], 615–618. http://dx.doi.org/10.1016/S0008-8846(98)00201-4

25. Gallé, C. (2001) Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry. A comparative study between oven-, vacuum-, and freeze-drying. Cem. Concr. Res. 31 [10], 1467–1477. http://dx.doi.org/10.1016/s0008-8846(01)00594-4

26. Sanjuán, M.A.; Mu-oz-Martialay R. (1996) Oven-drying as a preconditioning method for air permeability test on concrete, Mater. Lett. 27 [4–5], 263–268. http://dx.doi.org/10.1016/0167-577X(95)00283-9

27. Noumowé, A.N.; Clastres, P.; Debicki, G.; Costaz, J-L. (1996) Thermal stresses and water vapour pressure of High Performance Concrete at High Temperature. 4th International Symposium on Utilization of High-strength/ High-performance concrete, Paris, May.

28. EN 197-1, (2001) European standard, cement–Part 1: Composition, specifications, and conformity criteria. NF EN 197-1.

Published

2016-03-30

How to Cite

Ez-zaki, H., Diouri, A., Kamali-Bernard, S., & Sassi, O. (2016). Composite cement mortars based on marine sediments and oyster shell powder. Materiales De Construcción, 66(321), e080. https://doi.org/10.3989/mc.2016.01915

Issue

Section

Research Articles