Caracterización de las propiedades de pastas geopoliméricas de perlita

Autores/as

  • G. M. Tsaousi National Technical University of Athens (NTUA)
  • I. Douni National Technical University of Athens (NTUA)
  • D. Panias National Technical University of Athens (NTUA)

DOI:

https://doi.org/10.3989/mc.2016.10415

Palabras clave:

Perlita, Pasta geopolimérica, Activación alcalina, Caracterización

Resumen


El presente trabajo trata de la caracterización de pastas geopoliméricas basadas en perlita utilizando perlita fina como materia prima. Se han examinado los efectos que tienen los principales parámetros de síntesis —tales como la relación perlita/activador, la concentración de NaOH, la adición de sílice soluble al activador y la temperatura de curado— sobre el tiempo de fraguado, la estabilidad en medio acuoso, la viscosidad de la pasta y la resistencia a la compresión de los geopolímeros solidificados. Los resultados han mostrado que estas pastas poliméricas inorgánicas son fluidos no-Newtonianos de viscosidad estructural que alcanzan bajos niveles de viscosidad a alta tensiones de cizalla. Las condiciones óptimas de síntesis para las pastas geopoliméricas resultaron ser a) baja concentración inicial de NaOH en la fase alcalina (2–5 M) y b) una relación sólido-líquido entre 1,2 y 1,4 g/mL. Si se requiere fraguado muy rápido, se tienen que preparar las pastas con un activador alcalino dopado con sílice soluble y curar a altas temperaturas cercanas a los 90 °C.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Davidovits, J. (2005) Geopolymer chemistry and sustainable development. In: Proceedings of the World Congress Geopolymer, Saint-Quentin, France, 9–15.

Barbosa, V.F.F.; MacKenzie, K.J.D. (2003) Thermal behavior of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 38 [2], 319–331. https://doi.org/10.1016/S0025-5408(02)01022-X

Davidovits, J. (1994) Properties of geopolymer cements, In: Proceedings of the first international conference on alkaline cements and concretes, Kiev, Ukraine, 131–149.

Swanepoel, J.C.; Strydom, C.A. (2002) Utilization of fly ash in a geopolymeric material. Appl. Geochem. 17 [8], 1143–1148. https://doi.org/10.1016/S0883-2927(02)00005-7

Nicholson, C.; Fletcher, R.; Miller, N.; Stirling, C.; Morris, J.; Hodges, S.; MacKenzie, K.; Schmücker, M. (2005) Building Innovation through Geopolymer Technology. Chemistry in New Zealand, 69, 10–12.

Ryu, G.S.; Lee Y.B.; Koh, K.T.; Chung, Y.S. (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 47, 409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069

Vaou, V.; Panias, D. (2010) Thermal insulating foamy geopolymers from perlite. Miner. Eng. 23 [14], 1146–1151. https://doi.org/10.1016/j.mineng.2010.07.015

Sakkas, K.; Nomikos, P.; Sofianos, A.; Panias, D. (2014a) Sodium-based fire resistant geopolymer for passive fire protection. Fire Mater. 39 [3], 259–270. https://doi.org/10.1002/fam.2244

Sakkas, K.; Panias, D.; Nomikos, P.; Sofianos, A. (2014b) Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling Underground Space Technol. 43, 148–156. https://doi.org/10.1016/j.tust.2014.05.003

Barbosa, V.F.F.; MacKenzie, K.J.D.;Thaumatutgo, C. (2000) Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2 [4], 309–317. https://doi.org/10.1016/S1466-6049(00)00041-6

Xu, H.; Van Deventer, J.S.J. (2000) The geopolymerization of alumino-silicate minerals. Inter. J. Miner. Process. 59 [3], 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5

Palomo, A.; Grutzeck, M.W.; Blanco, M.T. (1999) Alkali activated fly ashes-a cement for the future. Cem. Concr. Res. 29 [8], 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022. https://doi.org/10.3989/mc.2014.00314

Cheng, T.W.; Chiu, J.P. (2003) Fire resistant Geopolymer produced by granulated blast furnace slag. Miner. Eng. 16 [3], 205–210. https://doi.org/10.1016/S0892-6875(03)00008-6

Cundi, W.; Hirano, Y.; Terai, T.; Vallepu, R.; Mikuni, A.; Ikeda, K. (2005) Preparation of geopolymeric monoliths from red mu-PFBC ash fillers at ambient temperature, In: Proccedings of the World Congress Geopolymer, Saint Quentin, France, 85–87.

Panias, D.; Giannopoulou, I.; Perraki, T. (2007) Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf., A. 301 [1–3], 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064

Maragos, I.; Giannopoulou, I.; Panias, D. (2008) Synthesis of ferronickel slag-based geopolymers. Miner. Eng. 22 [2], 196–203. https://doi.org/10.1016/j.mineng.2008.07.003

Pontikes, Y.; Machiels, L.; Onisei, S.; Pandelaers, L.; Geysen, D.; Jones, P. T.; Blanpain, B. (2013) Slags with a high Al and Fe content as precursors for inorganic polymers. Appl. Clay. Sci. 73, 93–102. https://doi.org/10.1016/j.clay.2012.09.020

Komnitsas, K.; Zaharaki, D.; Perdikatsis, V. (2009) Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J. Hazard. Mater. 161 [2–3], 760–768. https://doi.org/10.1016/j.jhazmat.2008.04.055 PMid:18508195

Erdogan, S. (2014) Properties of Ground Perlite Geopolymer Mortars. J. Mater. Civ. Eng. 27 [7].

Vance, E. R.; Perera, D. S.; Imperia, P.; Cassidy, D. J.; Davis, J.; Gourley, J. T. (2009) Perlite waste as a precursor for geopolymer formation. J. Aust. Ceram. Soc. 45 [1], 44–49. http://apo.ansto.gov.au/dspace/handle/10238/3130.

U.S. Geological Survey, Mineral Commodity Summaries, January 2016.

Kaufhold, S.; Reese, A.; Schwiebacher,W.; Dohrmann, R.; Grathoff, G.H.; Warr, L.N.; Halisch, M.; Müller, C.; Schwarz-Schampera, U.; Ufer Kaufhold, K et al. (2014) Porosity and distribution of water in perlite from the island of Milos, Greece. Springer Plus 3:598, http://www.springerplus.com/ content/3/1/598. https://doi.org/10.1186/2193-1801-3-598

Rattanasak, U and Chindaprasirt, P. (2009) Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22 [12], 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022

Panagiotopoulou, Ch.; Kontori, E.; Perraki, Th.; Kakali, G. (2007) Dissolution of aluminosilicate minerals and byproducts in alkaline media. J. Mater. Sci. 42 [9], 2967–2973. https://doi.org/10.1007/s10853-006-0531-8

PQ Corporation Industrial Chemical Division—National Silicates, Fundamentals of Silicate Chemistry. Available at: http://www.pqcorp.com/corporate/aboutpq.asp (06/04/2006).

Falcone, J.S. (1982) Soluble Silicates, Edited by J.S Falcone, Jr, Published Washington, D.C.194: American Chemical Society, (1982).

Duxson, P.; Provis, J.; Lukey, G.; Mallicoat, S.; Kriven, W.; Van Deventer, J. (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf., A. 269 [1], 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060

Taxiarchou, M.; Panias, D.; Panagiotopoulou, Ch.; Karalis, Th.; Dedeloudis, A. (2013) Study on the suitability of volcanic amorphous aluminosilicate rocks (perlite) for the synthesis of Geopolymer-based concrete. ASTM International Symposium on Geopolymer Binder Systems, 1566, 34–53, https://doi.org/10.1520/STP156620120077

Skorina, T.; Tikhomirova I. (2012) Alkali silicate binders: Effect of SiO2/Na2O ratio and alkali metal ion type on the structure and mechanical properties. J. Mater. Sci.47 [12], 5050–5059., https://doi.org/10.1007/s10853-012-6382-6

Nicolic, I.; Durovic, D.; Zejak, R.; Karanovic, L.; Tadic, M.; Blecic, C., Radmilovic, V. (2013) Compressive strength and hydrolytic stability of fly ash based geopolymers. J. Ser. Chem. Soc. 78 [6], 851–863. https://doi.org/10.2298/JSC121024001N

Panias, D.; Giannopoulou, I. (2007) The geopolymerization technology for the utilization of mining and metallurgical solid wastes. In: Proceedings of European Metallurgical Conference, Dusseldorf, Germany, 625–640. EMC 2007. PMid:17416461

Davidovits, J. (2008) Geopolymer chemistry and applications, 2nd edn, Publisher: Institut Geopolymere, Saint Quentin, France, Chap. 26, 547–574. PMCid:PMC2751601

Heah, C.; Kamarudin, H.; Mustafa Al Bakri, A.; Bnhussain, M.; Luqman, M.; Khairul, Nizar, I.; Ruzaidi, C.; Liew, Y. (2012) Study of solid-to-liquid and alkaline activator ratios on kaolin based geopolymers. Const. Build. Mater. 35, 912–922. https://doi.org/10.1016/j.conbuildmat.2012.04.102

Chindaprasirt, P.; De Silva , P.; Sagoe-Crentsil, K.; Hanjitsuwan, S. (2012) Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J. Mater. Sci. 47 [12] , 4876–4883. https://doi.org/10.1007/s10853-012-6353-y

Gao, K.; Lin, K.L.; Wang, D.Y.; Hwang, C.L.; Shiu, H.S.; Chang, Y.M.;Cheng, T.W. (2013) Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Constr. Build. Mater. 53, 503–510. https://doi.org/10.1016/j.conbuildmat.2013.12.003

Zuda, L.; Pavlik, Z.; Rovnanikova, P.; Bayer, P.; Cerny, R. (2006) Properties of Alkali Activated Aluminosilicate Material after Thermal Load. Int. J. Thermophys. 27 [4], 1250–1263. https://doi.org/10.1007/s10765-006-0077-7

Lee, W.K.W.; Van Deventer, J. S. J. (2002) Structural reorganization of class F fly ash in alkaline silicate solutions. Colloids Surf., A. 211 [1], 49–66. https://doi.org/10.1016/S0927-7757(02)00237-6

Xu, H.; Van Deventer, J.S.J. (2003) The effect of alkali metals on the formation of geopolymeric gels from alkalifeldspars. Colloids Surf., A. 216 [1], 27–44. https://doi.org/10.1016/S0927-7757(02)00499-5

Publicado

2016-12-30

Cómo citar

Tsaousi, G. M., Douni, I., & Panias, D. (2016). Caracterización de las propiedades de pastas geopoliméricas de perlita. Materiales De Construcción, 66(324), e102. https://doi.org/10.3989/mc.2016.10415

Número

Sección

Artículos

Artículos más leídos del mismo autor/a