Revisión sobre la preparación de muestras de hormigón y su influencia sobre la determinación del pH

Autores/as

DOI:

https://doi.org/10.3989/mc.2017.08515

Palabras clave:

pH, Hormigón, Mortero, Pasta de cemento, Solución porosa

Resumen


Determinar el pH de la fase acuosa de los poros de pastas de cemento, morteros y hormigones tiene gran importancia en el monitoreo de los procesos químicos que tienen lugar en los materiales cementiceos. Sin embargo, no existe una normativa que regule el método de preparación de la muestra para la determinación de su pH. Este artículo presenta un estado del conocimiento de diferentes metodologías para la determinación del pH de materiales cementiceos y la influencia del método de preparación según el objetivo. Además, se presenta una campaña experimental comparando tres técnicas diferentes. Dicha campaña contribuye a establecer un criterio simple que ayude al investigador en la selección del método más adecuado dependiendo del objeto de studio. Este artículo tiene por objetivo ser una herramienta sencilla para seleccionar la metodología más fácil y económica para determine

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Yosipovitch, G.; Xiong, G.L.; Haus, E.; Sackett-Lundeen, L.; Ashkenazi, I.; Maibach, H.I. (1998) Time- Dependent Variations of the Skin Barrier Function in Humans: Transepidermal Water Loss, Stratum Corneum Hydration, Skin Surface pH, and Skin Temperature. J. Invest. Allerg. Clin. 110(1):20–23. https://doi.org/10.1046/j.1523-1747.1998.00069.x

Rousk, J.; Brookes, P.C.; Bååth, E. (2009) Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Appl. Environ. Microb. 75(6):1589–1596. https://doi.org/10.1128/AEM.02775-08 PMid:19151179 PMCid:PMC2655475

Van der Schueren, L.; De Clerck, K. (2011) pH-sensitive textile sensors with possible use as wound dressings. European Congress and Exhibition on Advanced Materials and Processes. 12–15 September. Montpellier, France.

Barneyback, R.S.; Diamond, S. (1981) Expression and analysis of pore fluids from hardened cement pastes and mortars. Cem. Concr. Res. 11:279–285.

Aguilera, J.; Blanco-Varela, M.T.; Martínez-Ramírez, S. (2003) Thermodynamic modelling of the CaO-SiO2- CaCO3-H2O closed and open system at 25 ºC. Mater. Construcc. 53(270):35–43.

Iyengar, S.R.; Al-Tabbaa, A. (2007) Development Study of a low-pH Magnesium Phosphate Cement for Environmental Applications. Environ. Technol.

Chen, J.J.; Thomas, J.J.; Jennings, H.M. (2006) Decalcification shrinkage of cement paste. Cem. Concr. Res. 36:801–809.

Hobbs, D.W. (1988) Carbonation of concrete containing pfa. Mag. Concrete Res. 40(143):69–78. https://doi.org/10.1680/macr.1988.40.143.69

Carde, C.; François, R. (1999) Modelling the loss of strength and porosity increase due to the leaching of cement pastes. Cem. Concr. Res. 21:181–188.

Mainguy, M.; Tognazzi, C.; Torrenti, J.M.; Adenot, F. (2000) Modelling of leaching in pure cement paste and mortar. Cem. Concr. Res. 30:83–90.

Neville, A. (2004) The confused world of sulphate attack on concrete, Review. Cem. Concr. Res. 34:1275–1296.

Rozière, E.; Loukili, A.; El Hachem, R.; Grondin, F. (2009) Durability of concrete exposed to leaching and external sulphate attack. Cem. Concr. Res. 39:1188–1198.

Grubb, J.A.; Limaye, H.S.; Kakade, A.M. (2007) Testing pH of concrete, need for a standard procedure. Concr. Int. 29(4):78–83.

AENOR (2006) EN 14630 Products and systems for the protection and repair of concrete structures - Test methods - Determination of carbonation depth in hardened concrete by the phenolphthalein method.

Garcia-Lodeiro, I.; Palomo, J.G.; Palomo, A.; Fernández- Jiménez, A. (2014) A statistical approach to the study of concrete carbonation. Mater. Construcc. 64(313).

Bertron, A.; Duchesne, J.; Escadeillas, G. (2005) Accelerated tests of hardened cement pastes alteration by organic acids: analysis of the pH effect. Cem. Concr. Res. 35(1):155–166. https://doi.org/10.1016/j.cemconres.2004.09.009

Bertron, A.; Larreur-Cayol, S.; Le, T.M.T.; Escadeillas, G. (2009) Degradation of cementitious materials by some organic acids found in agroindustrial effluents. In: Concrete in aggressive aqueous environments – Performance, Testing and Modelling. Pp: 96–107. ISBN: 978-2-35158-082-0.

McPolin, D.; Basheer, P.; Long, A.; Grattan, K.; Sun, T. (2007) New Test Method to Obtain pH Profiles due to Carbonation of Concretes Containing Supplementary Cementitious Materials. J. Mater. Civ. Eng. 19(11):936–946. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:11(936)

Krajei, L.; Janotka, I. (2000) Measurement Techniques for Rapid Assessment of Carbonation in Concrete. ACI Mater. J. 97(2):168-171.

Yu, M.; Lee, J.; Chung, C. (2010) The Application of Various Indicators for the Estimation of Carbonation and pH of Cement Based Materials. J. Test. Eval. 38(5).

Dwivedi, V.N.; Singh, N.P.; Das, S.S.; Singh, N.B. (2006) A new pozzolanic material for cement industry: Bamboo leaf ash. Int. J. Phys. Sci. 1(3): 106–111.

Knopf, F.C.; Roy, A.; Samrow, H.A.; Dooley, K.M. (1999) High-Pressure Molding and Carbonation of Cementitious Materials. Ind. Eng. Chem. Res. 38(7):2641–2649. https://doi.org/10.1021/ie980705y

Gilbeau, B.P.; Harry, F.P.; Gambrell, R.P.; Knopf, F.C.; Dooley, K.M. (2003) Algae attachment on carbonated cements in fresh and brackish waters – preliminary results. Ecol. Eng. 20(4): 309–319. https://doi.org/10.1016/S0925-8574(03)00026-0

Massler, M.; Mansukhani, N. (1960) Testing liners under cements in vitro. J. Prosthet. Dent. 10(5): 964–975. https://doi.org/10.1016/0022-3913(60)90133-5

Ericsson, D.; Bratthall, D. (1989) Simplified method to stimulate salivary buffer capacity. Eur. J. Oral. Sci. 97(5): 405–407. https://doi.org/10.1111/j.1600-0722.1989.tb01453.x

Islander, R.; Devinny, J.; Mansfeld, F.; Postyn, A.; Shih, H. (1991) Microbial Ecology of Crown Corrosion in Sewers. J. Environ. Eng. 117(6): 751–770. https://doi.org/10.1061/(ASCE)0733-9372(1991)117:6(751)

Yesiladal, S.K.; Pekin, G.; Bermek, H.; Arslan-Alaton, I.; Orhon, D.; Tamerler, C. (2006) Bioremediation of textile azo dyes by Trichophyton rubrum LSK-27. World J. Microb. Biot. 22: 1027–1031.

Matinlinna, J.P.; Lassila, L.V.J.; Vallittu, P.K. (2006) Evaluation of five dental silanes on bonding a luting cement onto silica-coated titanium. J. Dent. 34(9): 721–726. https://doi.org/10.1016/j.jdent.2006.01.005 PMid:16513239

De Muynck, W.; De Belie, N.; Verstraete, W. (2009) Effectiveness of admixtures, surface treatments and antimicrobial compounds against biogenic sulfuric acid corrosion of concrete. Cem. Concr. Comp. 31: 163–170.

Maury-Ramírez, A.; De Muynck, W.; Stevens, R.; Demeestere, K.; De Belie, N. (2013) Titanium dioxide based strategies to prevent algal fouling on cementitious materials. Cem. Concr. Comp. 36: 93–100.

ASTM International (2008) F710-08 Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring.

Longuet, P.; Burglen, L.; Zelwer, A. (1973) La phase liquide du ciment hydraté. Rev. Mater. Constr. 676: 35-41.

Song, S.; Jennings, H.M. (1999) Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem. Concr. Res. 29(2): 159–170. https://doi.org/10.1016/S0008-8846(98)00212-9

Ramlochan, T.; Thomas, M.; Gruber, K.A. (2000) The effect of metakaolin on alkali-silica reaction in concrete. Cem. Concr. Res. 30(3): 339-344. https://doi.org/10.1016/S0008-8846(99)00261-6

Zhang, Y.M.; Sun, W.; Yan, H.D. (2000) Hydration of highvolume fly ash cement pastes. Cem. Concr. Res. 22(6): 445–452. https://doi.org/10.1016/S0958-9465(00)00044-5

Collier, N.C.; Milestone, N.B.; Gordon, L.E.; Ko, S.C. (2014) The suitability of a supersulfated cement for nuclear waste immobilisation. J. Nucl. Mater. 452(1-3): 457–464. https://doi.org/10.1016/j.jnucmat.2014.05.078

Guerrero, A.; Go-i, S.; Macías, A.; Luxán, M.P. (1999) Mechanical properties, pore size distribution, and pore solution of fly ash-belite cement mortars. Cem. Concr. Res. 29(11): 1753–1758. https://doi.org/10.1016/S0008-8846(99)00161-1

Li, L.; Sagües, A.A.; Poor, N. (1999) In situ leaching investigation of pH and nitrite concentration in concrete pore solution. Cem. Concr. Res. 29(3): 315–321. https://doi.org/10.1016/S0008-8846(98)00224-5

Lorenzo, M.P.; Go-i, S.; Guerrero, A. (2003) Role of aluminous component of fly ash on the durability of Portland cement-fly ash pastes in marine environment. Waste Manage. 23(8): 785–792. https://doi.org/10.1016/S0956-053X(03)00030-8

Li, L.; Nam, J.; Hartt, W.H. (2005) Ex situ leaching measurement of concrete alkalinity. Cem. Concr. Res. 35(2): 277–283. https://doi.org/10.1016/j.cemconres.2004.04.024

Pu, Q.; Jiang, L.; Xu, J.; Chu, H.; Xu, Y.; Zhang, Y. (2012) Evolution of pH and chemical composition of pore solution in carbonated concrete. Constr. Build. Mater. 28(1): 519–524. https://doi.org/10.1016/j.conbuildmat.2011.09.006

Constantiner, D.; Diamond, S. (1997) Pore solution analysis: Are there pressure effects? In: Mechanisms of Chemical Degradation of Cement-based Systems. London. ISBN: 0419215700.

Mori, T.; Nonaka, T.; Tazaki, K.; Koga, M.; Hikosaka, Y.; Noda, S. (1992) Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water. Res. 26(1): 29–37. https://doi.org/10.1016/0043-1354(92)90107-F

Räsänen, V.; Penttala, V. (2004) The pH measurement of concrete and smoothing mortar using a concrete powder suspension. Cem. Concr. Res. 34(5):813-820. https://doi.org/10.1016/j.cemconres.2003.09.017

Wang, K.; Mishulovich, A.; Shah, S. (2007) Activations and Properties of Cementitious Materials Made with Cement-Kiln Dust and Class F Fly Ash. J. Mater. Civ. Eng. 19(SPECIAL ISSUE): Geochemical Aspects of Stabilized Materials: 112–119. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(112)

Song, H.W.; Saraswathy, V.; Muralidharan, S.; Lee, C.H.; Thangavel, K. (2009) Role of alkali nitrites in the corrosion performance of steel in composite cements. J. Appl. Electrochem. 39: 15–22. https://doi.org/10.1007/s10800-008-9632-1

Webster, M.; Loehr, R. (1996) Long-Term Leaching of Metals from Concrete Products. J. Environ. Eng. 122(8): 714–721. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:8(714)

Ha-Won, S.; Min-Sun, J.; Chang-Hong, L.; Sang-Hyo, K.; Ki Yong, A. (2010) Influence of Chemistry of Chloride Ions in Cement Matrix on corrosion of Steel. ACI Mater. J. July-August: 332–339.

Gowripalan, N.; Mohamed, H.M. (1998) Chlorideion induced corrosion of galvanized and ordinary steel reinforcement in high-performance concrete. Cem. Concr. Res. 28(8): 1119–1131. https://doi.org/10.1016/S0008-8846(98)00090-8

Paglia, C.; Wombacher, F.; Böhni, H.; Sommer, M. (2002) An evaluation of the sulphate resistance of cementitious material accelerated with alkali-free and alkaline admixtures: Laboratory vs. Field. Cem. Concr. Res. 32(4): 665–671. https://doi.org/10.1016/S0008-8846(01)00739-6

Garrabrants, A.C.; Sanchez, F.; Kosson, D.S. (2004) Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation. Waste Manage. 24(1): 19-36. https://doi.org/10.1016/S0956-053X(03)00135-1

Dinakar, P.; Babu, K.G.; Santhanam, M. (2007) Corrosion behaviour of blended cements in low and medium strength concretes. Cem. Concr. Comp. 29(2): 136–145. https://doi.org/10.1016/j.cemconcomp.2006.10.005

Ottosen, L.M. and Rörig-Daalgard, I. (2009) Desalination of a brick by application of an electric DC field. Mater. Struct. 42: 963–971.

Björk, F.; Eriksson, C.A. (2002) Measurement of alkalinity in concrete by a simple procedure, to investigate transport alkaline material from concrete slab to a self-levelling screed. Constr. Build. Mater. 16(8): 535–542. https://doi.org/10.1016/S0950-0618(02)00035-1

Engelsen, C.J.; van der Sloot, H.A.; Wibetoe, G.; Justnes, H.; Lund, W.; Stoltenberg-Hansson, E. (2010) Leaching characterisation and geochemical modelling of minor and trace elements released from recycled concrete aggregates. Cem. Concr. Res. 40(12): 1639–1649. https://doi.org/10.1016/j.cemconres.2010.08.001

Abd El Aleem, S.; Heikal, M.; Morsi, W.M. (2014) Hydration characteristic, thermal expansion and microstructure of cement containing nano-silica. Constr. Build. Mater. 59: 151–160.

Manso, S.; Mestres, G.; Ginebra, M.P.; De Belie, N.; Segura, I.; Aguado, A. (2014) Development of a low pH cementitious material to enlarge bioreceptivity. Constr. Build. Mater. 54: 485–495.

Manso, S.; De Muynck, W.; Segura, I.; Aguado, A.; Steppe, K.; Boon, N.; De Belie, N. (2014) Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth. Sci. Total Environ. 481: 232–241. https://doi.org/10.1016/j.scitotenv.2014.02.059 PMid:24602907

Pavlík, V. (2000) Water extraction of chloride, hydroxide and other ions from hardened cement pastes. Cem. Concr. Res. 30(6): 895–906. https://doi.org/10.1016/S0008-8846(00)00261-1

Sagües, A.A.; Moreno, E.I.; Andrade, C. (1997) Evolution of pH during in-situ leaching in small concrete cavities. Cem. Concr. Res. 27(11): 1747–1759. https://doi.org/10.1016/S0008-8846(97)00177-4

Cáseres, L.; Sagües, A.A.; Kranc, S.C.; Weyers, R.E. (2006) In situ leaching method for determination of chloride in concrete pore water. Cem. Concr. Res. 36(3): 492–503. https://doi.org/10.1016/j.cemconres.2005.12.013

Ehrich, S.; Helard, L.; Letourneux, R.; Willocq, J.; Bock, E. (1999) Biogenic and Chemical Sulfuric Acid Corrosion of Mortars. J. Mater. Civ. Eng. 11(4): 340–344. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(340)

Roberts, D.J.; Nica, D.; Zuo, G.; Davis, J.L. (2002) Quantifying microbially induced deterioration of concrete: initial studies. Int. Biodeter. Biodegr. 49(4): 227–234. https://doi.org/10.1016/S0964-8305(02)00049-5

Okabe, S.; Odagiri, M.; Ito, T.; Satoh, H. (2007) Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems. Appl. Environ. Microbiol. 73(3): 971–980. https://doi.org/10.1128/AEM.02054-06 PMid:17142362 PMCid:PMC1800771

Heng, M.; Murata, K. (2004) Aging of concrete buildings and determining the pH value on the surface of concrete by using a handy semi-conductive pH-meter. Anal. Sci. 20(7):1087–1090. https://doi.org/10.2116/analsci.20.1087

Rostami, V.; Shao, Y.; Boyd, A. (2011) Durability of concrete pipes subjected to combined steam and carbonation curing. Constr. Build. Mater. 25(8):3345–3355. https://doi.org/10.1016/j.conbuildmat.2011.03.025

Rostami, V.; Shao, Y.; Boyd, A.; He, Z. (2012) Microstructure of cement paste subject to early carbonation curing. Cem. Concr. Res. 42(1):186–193. https://doi.org/10.1016/j.cemconres.2011.09.010

Shao, Y.; Rostami, V.; He, Z.; Boyd, A.J. (2014) Accelerated Carbonation of Portland Limestone Cement. J. Mater. Civ. Eng. 26(1): 117–124. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000773

AENOR (2005) UNE-EN 196-1. Methods of testing cement - Part 1: Determination of strength.

Taylor, H.F.W. Cement Chemistry. Academic Press Inc. London, 1990. ISBN: 0-12-683900-X.

Publicado

2017-03-30

Cómo citar

Manso, S., & Aguado, A. (2017). Revisión sobre la preparación de muestras de hormigón y su influencia sobre la determinación del pH. Materiales De Construcción, 67(325), e108. https://doi.org/10.3989/mc.2017.08515

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

<< < 1 2